001     642350
005     20251211130543.0
020 _ _ |a https://inspirehep.net/literature/3081479
024 7 _ |a Acharyya:2025lsx
|2 INSPIRETeX
024 7 _ |a inspire:3081479
|2 inspire
024 7 _ |a arXiv:2511.06116
|2 arXiv
037 _ _ |a PUBDB-2025-05505
088 _ _ |a arXiv:2511.06116
|2 arXiv
100 1 _ |a Acharyya, A.
|b 0
245 _ _ |a Probing a cosmogenic origin of astrophysical neutrinos and cosmic rays using gamma-ray observations of TXS 0506+056
260 _ _ |c 2025
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1765454440_3293429
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a Book
|0 PUB:(DE-HGF)3
|2 PUB:(DE-HGF)
|m book
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a 14 pages, 5 figures, Accepted for publication in the Astrophysical Journal (ApJ)
520 _ _ |a In September 2017, a high-energy neutrino event detected by the IceCube Neutrino Observatory (IceCube-170922A) was associated, at the $3σ$ level, with a gamma-ray flare from the blazar TXS 0506+056. Cosmic rays that are accelerated in astrophysical sources can escape from their jets and interact with background radiation fields. Interactions with the extragalactic background light can produce pions and hence neutrinos, while interactions with the cosmic microwave background predominantly drive inverse Compton scattering, contributing to electromagnetic cascades in intergalactic space. The resulting secondary gamma-ray emission can be detected with high-energy gamma-ray telescopes. Here, we report on a new search for such cosmogenic cascade emission from the blazar TXS 0506+056, using a combined data set from the Fermi-Large Area Telescope and VERITAS. We compare the gamma-ray spectrum and neutrino observations with the predictions of cosmic-ray induced cascades in intergalactic space. The observed gamma-ray spectrum is modeled as a combination of the primary spectrum and the cascade spectrum. We apply a Monte Carlo simulation with a $Δχ^2$-based likelihood analysis to jointly determine the best-fit parameters of a proton emission spectrum describing the data and derive constraints on the proton escape luminosity. Assuming a log-parabola primary photon spectrum, we find consistency with a proton injection spectral index of $α_{p} \simeq 2.0$ and a cutoff energy of $E_{p,\text{max}} \simeq 1.3 \times 10^{16}$ eV, and constrain the isotropic proton escape luminosity to $1 \times 10^{44}$ erg s$^{-1}$$\lesssim L_{p, esc} \lesssim 3 \times 10^{45}$ erg s$^{-1}$ at the 90 % confidence level.
536 _ _ |a 613 - Matter and Radiation from the Universe (POF4-613)
|0 G:(DE-HGF)POF4-613
|c POF4-613
|f POF IV
|x 0
588 _ _ |a Dataset connected to INSPIRE
693 _ _ |0 EXP:(DE-H253)VERITAS-20170101
|5 EXP:(DE-H253)VERITAS-20170101
|e Very Energetic Radiation Imaging Telescope Array System
|x 0
700 1 _ |a Archer, A.
|b 1
700 1 _ |a Bangale, P.
|b 2
700 1 _ |a Bartkoske, J. T.
|b 3
700 1 _ |a Benbow, W.
|b 4
700 1 _ |a Buckley, J. H.
|b 5
700 1 _ |a Chen, Y.
|b 6
700 1 _ |a Christiansen, J. L.
|b 7
700 1 _ |a Duerr, A.
|b 8
700 1 _ |a Errando, M.
|b 9
700 1 _ |a Godoy, M. Escobar
|b 10
700 1 _ |a Falcone, A.
|b 11
700 1 _ |a Feldman, S.
|b 12
700 1 _ |a Feng, Q.
|b 13
700 1 _ |a Filbert, S.
|b 14
700 1 _ |a Fortson, L.
|b 15
700 1 _ |a Furniss, A.
|b 16
700 1 _ |a Hanlon, W.
|b 17
700 1 _ |a Hervet, O.
|b 18
700 1 _ |a Hinrichs, C. E.
|b 19
700 1 _ |a Holder, J.
|b 20
700 1 _ |a Hughes, Z.
|b 21
700 1 _ |a Iskakova, M.
|b 22
700 1 _ |a Jin, W.
|b 23
700 1 _ |a Kaaret, P.
|b 24
700 1 _ |a Kertzman, M.
|b 25
700 1 _ |a Kherlakian, M.
|b 26
700 1 _ |a Kieda, D.
|b 27
700 1 _ |a Kleiner, Tobias Kai
|0 P:(DE-H253)PIP1093214
|b 28
|u desy
700 1 _ |a Korzoun, N.
|b 29
700 1 _ |a Lang, M. J.
|b 30
700 1 _ |a Lundy, M.
|b 31
700 1 _ |a Maier, G.
|b 32
700 1 _ |a Mooney, C. L.
|b 33
700 1 _ |a Mukherjee, R.
|b 34
700 1 _ |a Ning, W.
|b 35
700 1 _ |a Ong, R. A.
|b 36
700 1 _ |a Pandey, A.
|b 37
700 1 _ |a Pohl, Martin
|0 P:(DE-H253)PIP1010085
|b 38
|u desy
700 1 _ |a Pueschel, E.
|b 39
700 1 _ |a Quinn, J.
|b 40
700 1 _ |a Rabinowitz, P. L.
|b 41
700 1 _ |a Ragan, K.
|b 42
700 1 _ |a Reynolds, P. T.
|b 43
700 1 _ |a Ribeiro, D.
|b 44
700 1 _ |a Roache, E.
|b 45
700 1 _ |a Sadeh, I.
|b 46
700 1 _ |a Sadun, A. C.
|b 47
700 1 _ |a Saha, L.
|b 48
700 1 _ |a Sembroski, G. H.
|b 49
700 1 _ |a Shang, R.
|b 50
700 1 _ |a Splettstoesser, M.
|b 51
700 1 _ |a Tak, D.
|b 52
700 1 _ |a Talluri, A. K.
|b 53
700 1 _ |a Tucci, J. V.
|b 54
700 1 _ |a Valverde, J.
|b 55
700 1 _ |a Williams, D. A.
|b 56
700 1 _ |a Wong, S. L.
|b 57
700 1 _ |a Yoshikoshi, T.
|b 58
700 1 _ |a Meyer, M.
|b 59
700 1 _ |a Müller, J.
|b 60
856 4 _ |u https://bib-pubdb1.desy.de/record/642350/files/2511.06116v1.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/642350/files/2511.06116v1.pdf?subformat=pdfa
|x pdfa
|y Restricted
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 28
|6 P:(DE-H253)PIP1093214
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 38
|6 P:(DE-H253)PIP1010085
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-613
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter and Radiation from the Universe
|x 0
920 1 _ |0 I:(DE-H253)Z_GA-20210408
|k Z_GA
|l Gammaastronomie
|x 0
980 _ _ |a preprint
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a book
980 _ _ |a I:(DE-H253)Z_GA-20210408
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21