000642326 001__ 642326
000642326 005__ 20260202210337.0
000642326 0247_ $$2doi$$a10.1073/pnas.2504869122
000642326 0247_ $$2ISSN$$a0027-8424
000642326 0247_ $$2ISSN$$a1091-6490
000642326 037__ $$aPUBDB-2025-05481
000642326 041__ $$aEnglish
000642326 082__ $$a500
000642326 1001_ $$00000-0002-6855-8954$$aPotapova, Anna$$b0
000642326 245__ $$aVibrio cholerae biofilm matrix assembly and growth are shaped by a glutamate-specific TAXI/TRAP protein
000642326 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2025
000642326 3367_ $$2DRIVER$$aarticle
000642326 3367_ $$2DataCite$$aOutput Types/Journal article
000642326 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1770033998_3939685
000642326 3367_ $$2BibTeX$$aARTICLE
000642326 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000642326 3367_ $$00$$2EndNote$$aJournal Article
000642326 520__ $$aBiofilms are critical for the environmental persistence, survival, and infectivity of Vibrio cholerae, the causative agent of cholera. Here, we find that GluP, a glutamate-specific TRAP-TAXI protein, is an uncharacterized matrix component that plays a critical role in biofilm architecture. Loss of GluP reduces biofilm corrugation, expands colony size, and disperses cells from microcolonies, arguing that this factor maintains biofilm structure and organization. While GluP does not affect the abundance or localization of known matrix proteins, its absence reduces Vibrio exopolysaccharide (VPS) production. We determined the crystal structure of GluP, which revealed that GluP binds glutamate, and its biofilm-related phenotypes depend on this binding capability. We further examined the role of GluP in V. cholerae growth under defined conditions where L-glutamate serves as a carbon source, nitrogen source, or both. GluP-deficient strains specifically showed reduced growth when glucose was the carbon source and glutamate the nitrogen source. This defect is dependent on glutamate binding by GluP and highlights its role in coordinating nutrient acquisition and biofilm formation. Importantly, both biofilm assembly and growth defects occurred independently of the predicted membrane component of the Glu TRAP-TAXI system, GluQM. These findings indicate that GluP plays a dual role in biofilm assembly and growth, providing insight into its functional importance in V. cholerae physiology.
000642326 536__ $$0G:(DE-HGF)POF4-633$$a633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)$$cPOF4-633$$fPOF IV$$x0
000642326 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000642326 693__ $$0EXP:(DE-H253)P-P11-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P11-20150101$$aPETRA III$$fPETRA Beamline P11$$x0
000642326 7001_ $$aOguchi, Rino$$b1
000642326 7001_ $$0P:(DE-H253)PIP1096636$$aJimmy, Steffi$$b2$$udesy
000642326 7001_ $$00000-0001-9179-3875$$aEvans, Christopher R.$$b3
000642326 7001_ $$00000-0002-5347-2760$$aYarrington, Kaitlin D.$$b4
000642326 7001_ $$00009-0000-2205-290X$$aWinans, James B.$$b5
000642326 7001_ $$00000-0002-3891-9464$$aPiepoli, Sofia$$b6
000642326 7001_ $$00000-0003-1281-4071$$aOlder, Ethan A.$$b7
000642326 7001_ $$00009-0009-9585-1556$$aSchakel, Olivia F.$$b8
000642326 7001_ $$aWetherington, Miles T.$$b9
000642326 7001_ $$aGarvey, William$$b10
000642326 7001_ $$00000-0003-3261-7999$$aFloyd, Kyle A.$$b11
000642326 7001_ $$aVinogradov, Evgeny$$b12
000642326 7001_ $$00000-0001-8471-4171$$aYunker, Peter J.$$b13
000642326 7001_ $$00000-0001-9223-7977$$aSanchez, Laura M.$$b14
000642326 7001_ $$00000-0003-1751-4895$$aNadell, Carey D.$$b15
000642326 7001_ $$aLimoli, Dominique H.$$b16
000642326 7001_ $$00000-0003-2049-1137$$aDietrich, Lars E. P.$$b17
000642326 7001_ $$0P:(DE-H253)PIP1093629$$aSondermann, Holger$$b18
000642326 7001_ $$00000-0002-6384-7167$$aYildiz, Fitnat H.$$b19
000642326 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.2504869122$$gVol. 122, no. 50, p. e2504869122$$n50$$pe2504869122$$tProceedings of the National Academy of Sciences of the United States of America$$v122$$x0027-8424$$y2025
000642326 8564_ $$uhttps://bib-pubdb1.desy.de/record/642326/files/HTML-Approval_of_scientific_publication.html
000642326 8564_ $$uhttps://bib-pubdb1.desy.de/record/642326/files/PDF-Approval_of_scientific_publication.pdf
000642326 8564_ $$uhttps://bib-pubdb1.desy.de/record/642326/files/potapova-et-al-2025-vibrio-cholerae-biofilm-matrix-assembly-and-growth-are-shaped-by-a-glutamate-specific-taxi-trap.pdf$$yRestricted
000642326 8564_ $$uhttps://bib-pubdb1.desy.de/record/642326/files/potapova-et-al-2025-vibrio-cholerae-biofilm-matrix-assembly-and-growth-are-shaped-by-a-glutamate-specific-taxi-trap.pdf?subformat=pdfa$$xpdfa$$yRestricted
000642326 909CO $$ooai:bib-pubdb1.desy.de:642326$$pVDB
000642326 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1096636$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000642326 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1096636$$aCentre for Structural Systems Biology$$b2$$kCSSB
000642326 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1093629$$aDeutsches Elektronen-Synchrotron$$b18$$kDESY
000642326 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1093629$$aCentre for Structural Systems Biology$$b18$$kCSSB
000642326 9131_ $$0G:(DE-HGF)POF4-633$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vLife Sciences – Building Blocks of Life: Structure and Function$$x0
000642326 9141_ $$y2025
000642326 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-10$$wger
000642326 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2022$$d2024-12-10
000642326 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
000642326 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
000642326 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10
000642326 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-10
000642326 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
000642326 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-10
000642326 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-10
000642326 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-10
000642326 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-10
000642326 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-10
000642326 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-10
000642326 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-10
000642326 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
000642326 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bP NATL ACAD SCI USA : 2022$$d2024-12-10
000642326 9201_ $$0I:(DE-H253)CSSB-DESY-HS-20210521$$kCSSB-DESY-HS$$lStrukturelle Mikrobiologie CSSB$$x0
000642326 980__ $$ajournal
000642326 980__ $$aVDB
000642326 980__ $$aI:(DE-H253)CSSB-DESY-HS-20210521
000642326 980__ $$aUNRESTRICTED