000642205 001__ 642205
000642205 005__ 20260109212427.0
000642205 0247_ $$2doi$$a10.1039/D5CP03380B
000642205 0247_ $$2ISSN$$a1463-9076
000642205 0247_ $$2ISSN$$a1463-9084
000642205 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-05401
000642205 037__ $$aPUBDB-2025-05401
000642205 041__ $$aEnglish
000642205 082__ $$a540
000642205 1001_ $$0P:(DE-H253)PIP1031279$$aHarlow, Gary$$b0$$eCorresponding author
000642205 245__ $$aDynamics of lifting the Au(111) reconstruction in perchloric acid electrolyte
000642205 260__ $$aCambridge$$bRSC Publ.$$c2025
000642205 3367_ $$2DRIVER$$aarticle
000642205 3367_ $$2DataCite$$aOutput Types/Journal article
000642205 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767960654_4095513
000642205 3367_ $$2BibTeX$$aARTICLE
000642205 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000642205 3367_ $$00$$2EndNote$$aJournal Article
000642205 500__ $$acc-by
000642205 520__ $$aThe striped p × √3 reconstruction of Au(111) is a textbook example of how electrode surfaces reorganise in response to an applied potential. Using in situ high-energy surface X-ray diffraction, we track the surface reconstruction in 0.1 M HClO4 electrolyte while the potential is cycled at both 5 mV s−1 and 2 mV s−1 between 0.06 V and 0.86 V versus RHE. Reciprocal-space maps, collected every ∼10 s, show that the unit cell of the well-known herringbone reconstruction increases in length progressively as the potential is swept positively; the diffraction spots coalesce with the spot from the (111) surface and the reconstruction lifts completely above ≈0.7 V. The lifting and reformation dynamics of the surface reconstruction are seen to be relatively slow and continuous, when the potential is swept at 5 mV s−1 we observe the reconstruction lifting at more positive potentials than when swept at 2 mV s−1. Conversely the reforming of the reconstruction is also slow and is present at more positive potentials when the sweep rate is slower.
000642205 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000642205 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000642205 536__ $$0G:(DE-HGF)2020_Join2-SWEDEN-DESY$$aSWEDEN-DESY - SWEDEN-DESY Collaboration (2020_Join2-SWEDEN-DESY)$$c2020_Join2-SWEDEN-DESY$$x2
000642205 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000642205 693__ $$0EXP:(DE-H253)P-P07-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P07-20150101$$aPETRA III$$fPETRA Beamline P07$$x0
000642205 7001_ $$0P:(DE-H253)PIP1085771$$aLinpé, Weronica$$b1
000642205 7001_ $$0P:(DE-H253)PIP1030506$$aPfaff, Sebastian$$b2
000642205 7001_ $$aYang, Ziyan$$b3
000642205 7001_ $$0P:(DE-H253)PIP1085323$$aJacobse, Leon$$b4
000642205 7001_ $$0P:(DE-H253)PIP1013931$$aVonk, Vedran$$b5
000642205 7001_ $$0P:(DE-H253)PIP1085770$$aAbbondanza, Giuseppe$$b6
000642205 7001_ $$aPeña-Díaz, Marina$$b7
000642205 7001_ $$00000-0002-4257-2651$$aBarja, S.$$b8
000642205 7001_ $$0P:(DE-H253)PIP1010723$$aDippel, Ann-Christin$$b9
000642205 7001_ $$0P:(DE-H253)PIP1007064$$aGutowski, Olof$$b10
000642205 7001_ $$0P:(DE-H253)PIP1089362$$aLarsson, Alfred$$b11
000642205 7001_ $$0P:(DE-H253)PIP1090062$$aRämisch, Lisa$$b12
000642205 7001_ $$0P:(DE-H253)PIP1030509$$aZetterberg, Johan$$b13
000642205 7001_ $$0P:(DE-H253)PIP1019770$$aMerte, Lindsay R.$$b14
000642205 7001_ $$0P:(DE-H253)PIP1012873$$aStierle, Andreas$$b15
000642205 7001_ $$0P:(DE-H253)PIP1013817$$aLundgren, Edvin$$b16
000642205 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D5CP03380B$$gVol. 27, no. 46, p. 25179 - 25186$$n46$$p25179 - 25186$$tPhysical chemistry, chemical physics$$v27$$x1463-9076$$y2025
000642205 8564_ $$uhttps://bib-pubdb1.desy.de/record/642205/files/d5cp03380b.pdf$$yOpenAccess
000642205 8564_ $$uhttps://bib-pubdb1.desy.de/record/642205/files/d5cp03380b.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000642205 909CO $$ooai:bib-pubdb1.desy.de:642205$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000642205 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1031279$$aExternal Institute$$b0$$kExtern
000642205 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1085771$$aExternal Institute$$b1$$kExtern
000642205 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1030506$$aExternal Institute$$b2$$kExtern
000642205 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1085323$$aExternal Institute$$b4$$kExtern
000642205 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1013931$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000642205 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1013931$$aEuropean XFEL$$b5$$kXFEL.EU
000642205 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1085770$$aExternal Institute$$b6$$kExtern
000642205 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1010723$$aDeutsches Elektronen-Synchrotron$$b9$$kDESY
000642205 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1007064$$aDeutsches Elektronen-Synchrotron$$b10$$kDESY
000642205 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1089362$$aExternal Institute$$b11$$kExtern
000642205 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1090062$$aExternal Institute$$b12$$kExtern
000642205 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1030509$$aExternal Institute$$b13$$kExtern
000642205 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1019770$$aExternal Institute$$b14$$kExtern
000642205 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1012873$$aDeutsches Elektronen-Synchrotron$$b15$$kDESY
000642205 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1012873$$aEuropean XFEL$$b15$$kXFEL.EU
000642205 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1013817$$aExternal Institute$$b16$$kExtern
000642205 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000642205 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000642205 9141_ $$y2025
000642205 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
000642205 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
000642205 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000642205 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-09
000642205 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-09
000642205 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
000642205 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-09
000642205 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000642205 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2022$$d2024-12-09
000642205 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-09$$wger
000642205 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-09
000642205 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
000642205 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000642205 9201_ $$0I:(DE-H253)FS-PETRA-D-20210408$$kFS-PETRA-D$$lPETRA-D$$x1
000642205 9201_ $$0I:(DE-H253)FS-NL-20120731$$kFS-NL$$lNanolab$$x2
000642205 980__ $$ajournal
000642205 980__ $$aVDB
000642205 980__ $$aUNRESTRICTED
000642205 980__ $$aI:(DE-H253)HAS-User-20120731
000642205 980__ $$aI:(DE-H253)FS-PETRA-D-20210408
000642205 980__ $$aI:(DE-H253)FS-NL-20120731
000642205 9801_ $$aFullTexts