000642084 001__ 642084
000642084 005__ 20260202210336.0
000642084 0247_ $$2doi$$a10.1016/j.jre.2025.08.014
000642084 0247_ $$2ISSN$$a1002-0721
000642084 0247_ $$2ISSN$$a2509-4963
000642084 037__ $$aPUBDB-2025-05346
000642084 041__ $$aEnglish
000642084 082__ $$a610
000642084 1001_ $$aZhang, Li$$b0
000642084 245__ $$aTemperature-dependent thermal conductivity and microscopic mechanisms in a Mg-Al-Y alloy
000642084 260__ $$aBeijing$$b[Verlag nicht ermittelbar]$$c2025
000642084 3367_ $$2DRIVER$$aarticle
000642084 3367_ $$2DataCite$$aOutput Types/Journal article
000642084 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1770044089_3939694
000642084 3367_ $$2BibTeX$$aARTICLE
000642084 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000642084 3367_ $$00$$2EndNote$$aJournal Article
000642084 500__ $$aOnlineFirst VDB
000642084 520__ $$aProducts designed for heat dissipation are often operated in elevated temperature environments. Therefore, understanding the microstructural variations, affected by heat treating processes, on thermal behavior at elevated temperatures is essential for the advancement of heat dissipation applications. Nevertheless, the temperature effect on thermal conductivity of magnesium alloys with different microstructures remains unclear. This study introduces an “intermetallic + α-Mg” two-phase model to clarify these effects in a Mg-7.28Al-0.13Y-0.11Mn (AW70) alloy. The thermal conductivity of as-solutionized AW70 alloy is 55.1 W/(m·K) at ambient temperature, and increases to 68.2 W/(m·K) after aging, due to precipitation that reduces lattice distortion. As temperature rises, the thermal conductivity, in both solutionized and aged states, generally increases owing to consistent electron scattering by static lattice defects. The thermal conductivity of solutionized and aged AW70 alloy at 250 °C is about 79.2 and 91.2 W/(m·K) respectively, reflecting increase of 24.8 W/(m·K) (45.6%) and 22.2 W/(m·K) (32.3%) compared to the values measured at 25 °C. Both the solutionized and aged alloys exhibit a stable thermal conductivity increase rate (0.11 W/(m·K2)) below 250 °C, demonstrating a remarkable independence from variations in solute content and precipitates. Within the temperature range of 250–350 °C, the as-aged alloy shows a temporary decline in thermal conductivity, attributed to the dissolution of the Mg17Al12 precipitates into the α-Mg matrix. This research fills a gap in current understanding, while also sets the stage for further explorations in manipulating thermal properties of Mg alloys.
000642084 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000642084 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000642084 693__ $$0EXP:(DE-H253)P-P21.2-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P21.2-20150101$$aPETRA III$$fPETRA Beamline P21.2$$x0
000642084 7001_ $$0P:(DE-H253)PIP1112581$$aWang, Jie$$b1$$eCorresponding author
000642084 7001_ $$aWu, Ligang$$b2
000642084 7001_ $$0P:(DE-HGF)0$$aZhao, Yuantao$$b3$$eCorresponding author
000642084 7001_ $$00000-0002-5371-6091$$aLiu, Yahui$$b4
000642084 7001_ $$0P:(DE-H253)PIP1032060$$aHuang, Meng$$b5
000642084 7001_ $$aChen, Zhibin$$b6
000642084 7001_ $$0P:(DE-H253)PIP1084066$$aZhu, Gaoming$$b7$$eCorresponding author
000642084 7001_ $$aZeng, Xiaoqin$$b8
000642084 773__ $$0PERI:(DE-600)2238797-3$$a10.1016/j.jre.2025.08.014$$gp. S1002072125003047$$pNN$$tJournal of rare earths$$vNN$$x1002-0721$$y2025
000642084 8564_ $$uhttps://www.sciencedirect.com/science/article/pii/S1002072125003047
000642084 8564_ $$uhttps://bib-pubdb1.desy.de/record/642084/files/Manuscript.doc$$yRestricted
000642084 8564_ $$uhttps://bib-pubdb1.desy.de/record/642084/files/Manuscript.docx$$yRestricted
000642084 8564_ $$uhttps://bib-pubdb1.desy.de/record/642084/files/Manuscript.odt$$yRestricted
000642084 8564_ $$uhttps://bib-pubdb1.desy.de/record/642084/files/Manuscript.pdf$$yRestricted
000642084 909CO $$ooai:bib-pubdb1.desy.de:642084$$pVDB
000642084 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1112581$$aExternal Institute$$b1$$kExtern
000642084 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1032060$$aExternal Institute$$b5$$kExtern
000642084 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1084066$$aExternal Institute$$b7$$kExtern
000642084 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000642084 9141_ $$y2025
000642084 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ RARE EARTH : 2022$$d2024-12-11
000642084 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
000642084 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
000642084 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-11
000642084 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-11
000642084 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
000642084 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-11
000642084 9201_ $$0I:(DE-H253)FS_DOOR-User-20241023$$kFS DOOR-User$$lFS DOOR-User$$x0
000642084 9201_ $$0I:(DE-H253)Hereon-20210428$$kHereon$$lHelmholtz-Zentrum Hereon$$x1
000642084 980__ $$ajournal
000642084 980__ $$aVDB
000642084 980__ $$aI:(DE-H253)FS_DOOR-User-20241023
000642084 980__ $$aI:(DE-H253)Hereon-20210428
000642084 980__ $$aUNRESTRICTED