001     641892
005     20251205222112.0
024 7 _ |a arXiv:2507.00723
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2025-05238
|2 datacite_doi
037 _ _ |a PUBDB-2025-05238
041 _ _ |a English
088 _ _ |a arXiv:2507.00723
|2 arXiv
100 1 _ |a Bause, Markus
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Multi-goal-oriented anisotropic error control and mesh adaptivity for time-dependent convection-dominated problems
260 _ _ |c 2025
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1764946049_3006626
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a 14 pages, 5 Figures, 2 Tables. Submitted to PAMM. arXiv admin note: substantial text overlap with arXiv:2504.04951
520 _ _ |a In this work, we present an anisotropic multi-goal error control based on the Dual Weighted Residual (DWR) method for time-dependent convection-diffusion-reaction (CDR) equations. This multi-goal oriented approach allows for an accurate and efficient error control with regard to several quantities of interest simultaneously. Using anisotropic interpolation and restriction operators, we obtain elementwise error indicators in space and time, where the spatial indicators are additionally separated with respect to the single directions. The directional error indicators quantify anisotropy of the solution with respect to the goals, and produce adaptive, anisotropic meshes that efficiently capture layers. To prevent spurious oscillations the streamline upwind Petrov-Galerkin (SUPG) method is applied to stabilize the underlying system in the case of high P\'{e}clet numbers. Numerical examples show efficiency and robustness of the proposed approach for several goal quantities using established benchmarks for convection-dominated transport.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)390833453 - EXC 2122: PhoenixD: Photonics, Optics, and Engineering – Innovation Across Disciplines (390833453)
|0 G:(GEPRIS)390833453
|c 390833453
|x 1
588 _ _ |a Dataset connected to arXivarXiv
693 _ _ |a SINBAD
|e AXSIS: Frontiers in Attosecond X-ray Science, Imaging and Spectroscopy
|1 EXP:(DE-H253)SINBAD-20200101
|0 EXP:(DE-H253)AXSIS-20200101
|5 EXP:(DE-H253)AXSIS-20200101
|x 0
700 1 _ |a Bruchhäuser, Marius Paul
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Endmayer, Bernhard
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Margenberg, Nils
|0 P:(DE-H253)PIP1100991
|b 3
700 1 _ |a Toulopoulos, Ioannis
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Wick, Thomas
|0 P:(DE-HGF)0
|b 5
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/641892/files/Bause%20-%20Multi-goal-oriented%20anisotropic%20error%20control.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/641892/files/Bause%20-%20Multi-goal-oriented%20anisotropic%20error%20control.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:641892
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1100991
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 1 _ |0 I:(DE-H253)FS-CFEL-2-20120731
|k FS-CFEL-2
|l Ultrafast Lasers & X-rays Division
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-CFEL-2-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21