000641780 001__ 641780
000641780 005__ 20251204211125.0
000641780 0247_ $$2doi$$a10.1016/j.actamat.2025.121398
000641780 0247_ $$2ISSN$$a1359-6454
000641780 0247_ $$2ISSN$$a1873-2453
000641780 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-05190
000641780 037__ $$aPUBDB-2025-05190
000641780 041__ $$aEnglish
000641780 082__ $$a670
000641780 1001_ $$0P:(DE-H253)PIP1093946$$aShang, Yuanyuan$$b0$$eCorresponding author
000641780 245__ $$aLow-temperature regeneration of metal hydride after impurity gas exposure
000641780 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2025
000641780 3367_ $$2DRIVER$$aarticle
000641780 3367_ $$2DataCite$$aOutput Types/Journal article
000641780 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1764845942_318075
000641780 3367_ $$2BibTeX$$aARTICLE
000641780 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000641780 3367_ $$00$$2EndNote$$aJournal Article
000641780 520__ $$aMany industrial applications require hydrogen purification, and metal hydrides can serve this purpose. In this study, the effects of gaseous impurities like CO2, CH4, and O2 on the hydrogen cycling behavior of commercial Ti-Fe-Mn were carefully studied. Impurities of O2 and CO2 considerably lower the hydrogen storage capacity of the materials, whereas CH4 has a lesser effect. According to the results of the microstructural characterization, upon hydrogen cycling, a shell of oxides and carbonates forms at the Ti-Fe-Mn particles surface, acting as a barrier for the hydrogen diffusion but at the same time preventing the further interaction of the alloy core with the gaseous impurities. First-principles calculations based on density functional theory reveal that Fe-Ti-Ti threefold, Ti-Ti bridge, Mn-Ti-Ti threefold, and Fe-Ti-Ti threefold are the favored sites for the adsorption of CO2, CH4, H and O, respectively. Remarkably, the samples can be regenerated at 90 °C, a temperature so moderate that it is ideal for the practical use of the Ti-Fe-Mn hydrogen storage system. 
000641780 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000641780 536__ $$0G:(DE-H253)I-20231121$$aFS-Proposal: I-20231121 (I-20231121)$$cI-20231121$$x1
000641780 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000641780 693__ $$0EXP:(DE-H253)P-P02.1-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P02.1-20150101$$aPETRA III$$fPETRA Beamline P02.1$$x0
000641780 7001_ $$aSanthosh, Archa$$b1
000641780 7001_ $$aAnte, Mirko$$b2
000641780 7001_ $$aWimbert, Lars$$b3
000641780 7001_ $$00000-0002-2995-9755$$aJerabek, Paul$$b4
000641780 7001_ $$aSchupp, Thomas$$b5
000641780 7001_ $$00000-0002-9521-3273$$aKlassen, Thomas$$b6
000641780 7001_ $$0P:(DE-H253)PIP1010848$$aPistidda, Claudio$$b7$$eCorresponding author
000641780 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2025.121398$$gVol. 298, p. 121398 -$$p121398 $$tActa materialia$$v298$$x1359-6454$$y2025
000641780 8564_ $$uhttps://bib-pubdb1.desy.de/record/641780/files/1-s2.0-S1359645425006846-main.pdf$$yOpenAccess
000641780 8564_ $$uhttps://bib-pubdb1.desy.de/record/641780/files/1-s2.0-S1359645425006846-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000641780 909CO $$ooai:bib-pubdb1.desy.de:641780$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000641780 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1093946$$aExternal Institute$$b0$$kExtern
000641780 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1010848$$aExternal Institute$$b7$$kExtern
000641780 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000641780 9141_ $$y2025
000641780 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-31
000641780 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-31
000641780 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-31
000641780 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000641780 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-31
000641780 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-31
000641780 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2022$$d2024-12-31
000641780 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-31
000641780 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000641780 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-31
000641780 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2022$$d2024-12-31
000641780 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-31
000641780 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-31
000641780 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-31
000641780 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000641780 9201_ $$0I:(DE-H253)Hereon-20210428$$kHereon$$lHelmholtz-Zentrum Hereon$$x1
000641780 980__ $$ajournal
000641780 980__ $$aVDB
000641780 980__ $$aUNRESTRICTED
000641780 980__ $$aI:(DE-H253)HAS-User-20120731
000641780 980__ $$aI:(DE-H253)Hereon-20210428
000641780 9801_ $$aFullTexts