001     641395
005     20260107122300.0
024 7 _ |a 10.1107/S1600576725000974
|2 doi
024 7 _ |a 0021-8898
|2 ISSN
024 7 _ |a 1600-5767
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-05056
|2 datacite_doi
037 _ _ |a PUBDB-2025-05056
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Voelter, Constantin
|0 P:(DE-H253)PIP1106134
|b 0
|e Corresponding author
245 _ _ |a Benchmarking deep learning for automated peak detection on GIWAXS data
260 _ _ |a Copenhagen
|c 2025
|b Munksgaard
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1767603603_4126803
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Recent advancements in X-ray sources and detectors have dramatically increased data generation, leading to a greater demand for automated data processing. This is particularly relevant for real-time grazing-incidence wide-angle X-ray scattering (GIWAXS) experiments which can produce hundreds of thousands of diffraction images in a single day at a synchrotron beamline. Deep learning (DL)-based peak-detection techniques are becoming prominent in this field, but rigorous benchmarking is essential to evaluate their reliability, identify potential problems, explore avenues for improvement and build confidence among researchers for seamless integration into their workflows. However, the systematic evaluation of these techniques has been hampered by the lack of annotated GIWAXS datasets, standardized metrics and baseline models. To address these challenges, we introduce a comprehensive framework comprising an annotated experimental dataset, physics-informed metrics adapted to the GIWAXS geometry and a competitive baseline – a classical, non-DL peak-detection algorithm optimized on our dataset. Furthermore, we apply our framework to benchmark a recent DL solution trained on simulated data and discover its superior performance compared with our baseline. This analysis not only highlights the effectiveness of DL methods for identifying diffraction peaks but also provides insights for further development of these solutions.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)390727645 - EXC 2064: Maschinelles Lernen: Neue Perspektiven für die Wissenschaft (390727645)
|0 G:(GEPRIS)390727645
|c 390727645
|x 1
536 _ _ |a DFG project G:(GEPRIS)460248799 - DAPHNE4NFDI - DAten aus PHoton- und Neutronen Experimenten für NFDI (460248799)
|0 G:(GEPRIS)460248799
|c 460248799
|x 2
536 _ _ |a 05K19VTA - Entwicklung einer kompakten Probenumgebung mit Spin-Coater für in-situ Röntgenstreuung an PETRA III. (BMBF-05K19VTA)
|0 G:(DE-Ds200)BMBF-05K19VTA
|c BMBF-05K19VTA
|f 05K19VTA
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P08
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P08-20150101
|6 EXP:(DE-H253)P-P08-20150101
|x 0
700 1 _ |a Starostin, Vladimir
|0 P:(DE-H253)PIP1090758
|b 1
700 1 _ |a Lapkin, Dmitrii
|0 P:(DE-H253)PIP1081202
|b 2
700 1 _ |a Munteanu, Valentin
|0 P:(DE-H253)PIP1096639
|b 3
700 1 _ |a Romodin, Mikhail
|0 P:(DE-H253)PIP1105842
|b 4
700 1 _ |a Hylinski, Maik
|0 P:(DE-H253)PIP1106139
|b 5
700 1 _ |a Gerlach, Alexander
|0 P:(DE-H253)PIP1017188
|b 6
700 1 _ |a Hinderhofer, Alexander
|0 P:(DE-H253)PIP1081858
|b 7
700 1 _ |a Schreiber, Frank
|0 P:(DE-H253)PIP1008437
|b 8
773 _ _ |a 10.1107/S1600576725000974
|g Vol. 58, no. 2, p. 513 - 522
|0 PERI:(DE-600)2020879-0
|n 2
|p 513 - 522
|t Journal of applied crystallography
|v 58
|y 2025
|x 0021-8898
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/641395/files/vb5088.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/641395/files/vb5088.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:641395
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1106134
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1090758
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1081202
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1081202
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 2
|6 P:(DE-H253)PIP1081202
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1096639
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1105842
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1106139
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1017188
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1081858
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1008437
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-17
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-17
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J APPL CRYSTALLOGR : 2022
|d 2024-12-17
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J APPL CRYSTALLOGR : 2022
|d 2024-12-17
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-17
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-17
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-17
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-17
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-17
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21