| Home > Publications database > Benchmarking deep learning for automated peak detection on GIWAXS data > print |
| 001 | 641395 | ||
| 005 | 20260107122300.0 | ||
| 024 | 7 | _ | |a 10.1107/S1600576725000974 |2 doi |
| 024 | 7 | _ | |a 0021-8898 |2 ISSN |
| 024 | 7 | _ | |a 1600-5767 |2 ISSN |
| 024 | 7 | _ | |a 10.3204/PUBDB-2025-05056 |2 datacite_doi |
| 037 | _ | _ | |a PUBDB-2025-05056 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Voelter, Constantin |0 P:(DE-H253)PIP1106134 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Benchmarking deep learning for automated peak detection on GIWAXS data |
| 260 | _ | _ | |a Copenhagen |c 2025 |b Munksgaard |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1767603603_4126803 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Recent advancements in X-ray sources and detectors have dramatically increased data generation, leading to a greater demand for automated data processing. This is particularly relevant for real-time grazing-incidence wide-angle X-ray scattering (GIWAXS) experiments which can produce hundreds of thousands of diffraction images in a single day at a synchrotron beamline. Deep learning (DL)-based peak-detection techniques are becoming prominent in this field, but rigorous benchmarking is essential to evaluate their reliability, identify potential problems, explore avenues for improvement and build confidence among researchers for seamless integration into their workflows. However, the systematic evaluation of these techniques has been hampered by the lack of annotated GIWAXS datasets, standardized metrics and baseline models. To address these challenges, we introduce a comprehensive framework comprising an annotated experimental dataset, physics-informed metrics adapted to the GIWAXS geometry and a competitive baseline – a classical, non-DL peak-detection algorithm optimized on our dataset. Furthermore, we apply our framework to benchmark a recent DL solution trained on simulated data and discover its superior performance compared with our baseline. This analysis not only highlights the effectiveness of DL methods for identifying diffraction peaks but also provides insights for further development of these solutions. |
| 536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 0 |
| 536 | _ | _ | |a DFG project G:(GEPRIS)390727645 - EXC 2064: Maschinelles Lernen: Neue Perspektiven für die Wissenschaft (390727645) |0 G:(GEPRIS)390727645 |c 390727645 |x 1 |
| 536 | _ | _ | |a DFG project G:(GEPRIS)460248799 - DAPHNE4NFDI - DAten aus PHoton- und Neutronen Experimenten für NFDI (460248799) |0 G:(GEPRIS)460248799 |c 460248799 |x 2 |
| 536 | _ | _ | |a 05K19VTA - Entwicklung einer kompakten Probenumgebung mit Spin-Coater für in-situ Röntgenstreuung an PETRA III. (BMBF-05K19VTA) |0 G:(DE-Ds200)BMBF-05K19VTA |c BMBF-05K19VTA |f 05K19VTA |x 3 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
| 693 | _ | _ | |a PETRA III |f PETRA Beamline P08 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P08-20150101 |6 EXP:(DE-H253)P-P08-20150101 |x 0 |
| 700 | 1 | _ | |a Starostin, Vladimir |0 P:(DE-H253)PIP1090758 |b 1 |
| 700 | 1 | _ | |a Lapkin, Dmitrii |0 P:(DE-H253)PIP1081202 |b 2 |
| 700 | 1 | _ | |a Munteanu, Valentin |0 P:(DE-H253)PIP1096639 |b 3 |
| 700 | 1 | _ | |a Romodin, Mikhail |0 P:(DE-H253)PIP1105842 |b 4 |
| 700 | 1 | _ | |a Hylinski, Maik |0 P:(DE-H253)PIP1106139 |b 5 |
| 700 | 1 | _ | |a Gerlach, Alexander |0 P:(DE-H253)PIP1017188 |b 6 |
| 700 | 1 | _ | |a Hinderhofer, Alexander |0 P:(DE-H253)PIP1081858 |b 7 |
| 700 | 1 | _ | |a Schreiber, Frank |0 P:(DE-H253)PIP1008437 |b 8 |
| 773 | _ | _ | |a 10.1107/S1600576725000974 |g Vol. 58, no. 2, p. 513 - 522 |0 PERI:(DE-600)2020879-0 |n 2 |p 513 - 522 |t Journal of applied crystallography |v 58 |y 2025 |x 0021-8898 |
| 856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/641395/files/vb5088.pdf |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/641395/files/vb5088.pdf?subformat=pdfa |
| 909 | C | O | |o oai:bib-pubdb1.desy.de:641395 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1106134 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1090758 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1081202 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1081202 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 2 |6 P:(DE-H253)PIP1081202 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1096639 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-H253)PIP1105842 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1106139 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-H253)PIP1017188 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 7 |6 P:(DE-H253)PIP1081858 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 P:(DE-H253)PIP1008437 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-17 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-17 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-17 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J APPL CRYSTALLOGR : 2022 |d 2024-12-17 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J APPL CRYSTALLOGR : 2022 |d 2024-12-17 |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2024-12-17 |w ger |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-17 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-17 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-17 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-17 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-17 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-17 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-17 |
| 920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|