000641241 001__ 641241 000641241 005__ 20251204211123.0 000641241 0247_ $$2doi$$a10.1016/j.jmbbm.2025.106998 000641241 0247_ $$2ISSN$$a1751-6161 000641241 0247_ $$2ISSN$$a1878-0180 000641241 037__ $$aPUBDB-2025-04972 000641241 041__ $$aEnglish 000641241 082__ $$a570 000641241 1001_ $$0P:(DE-H253)PIP1033426$$aZaouali, Ameni$$b0 000641241 245__ $$aRestoration of hydroxyapatite particle thickness and crystalline orientation does not lead to recovery of tissue-scale mechanical properties in regenerating rat calvarial bone defects 000641241 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2025 000641241 3367_ $$2DRIVER$$aarticle 000641241 3367_ $$2DataCite$$aOutput Types/Journal article 000641241 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1764853966_761905 000641241 3367_ $$2BibTeX$$aARTICLE 000641241 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000641241 3367_ $$00$$2EndNote$$aJournal Article 000641241 500__ $$aWaiting for fulltext 000641241 520__ $$aVarious cellular activities regulate bone healing, causing structural changes and evolving mechanical characteristics during the regeneration process. This pilot study aimed to correlate the time- and space-resolved mechanical behavior of regenerating and related biological processes. While the mechanical properties of bone are known to be based on a nanostructure organization, this study intends to highlight the evolution of the strain distribution induced by the reconstruction process, which is mainly driven by the mineral part (i.e., hydroxyapatite) of the bone architecture. Multiscale mechanical (tensile and nanoindentation tests) and biological (X-ray microtomography measurements and histological observations) characterization methods were applied to 3 mm rat cranial defects, one of the most reproducible animal models used to assess bone regeneration, filled with bone grafts, the gold standard for bone repair. The size and crystallographic orientation of the hydroxyapatite particles as well as their lattice (elastic) strain distribution under tensile loading were investigated through in situ synchrotron wide-angle and small-angle X-ray scattering measurements at various healing stages. Analyses were completed to quantify the elastic properties at the tissue-scale via nanoindentation measurements. The resulting mappings of lattice strain, mean particle thickness and crystallographic orientations revealed how tissue evolves during bone repair. At the early stages of the regeneration process, the microstructural changes consisted of a restored hydroxyapatite platelet shape and crystallographic orientation. At later stages, the hydroxyapatite crystallographic orientation reached that of native bone, and the mechanical function of the tissue in the defect zone was restored at the mineral particle scale. Nevertheless, even for the longest regeneration duration (20 weeks), mechanical properties at the tissue-scale remained ineffective, highlighting the importance of multiscale investigations to address this type of issue. 000641241 536__ $$0G:(DE-HGF)POF4-633$$a633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)$$cPOF4-633$$fPOF IV$$x0 000641241 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1 000641241 536__ $$0G:(DE-H253)I-20170353-EC$$aFS-Proposal: I-20170353 EC (I-20170353-EC)$$cI-20170353-EC$$x2 000641241 536__ $$0G:(DE-H253)I-20180931-EC$$aFS-Proposal: I-20180931 EC (I-20180931-EC)$$cI-20180931-EC$$x3 000641241 536__ $$0G:(EU-Grant)730872$$aCALIPSOplus - Convenient Access to Light Sources Open to Innovation, Science and to the World (730872)$$c730872$$fH2020-INFRAIA-2016-1$$x4 000641241 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de 000641241 693__ $$0EXP:(DE-H253)P-P03-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P03-20150101$$aPETRA III$$fPETRA Beamline P03$$x0 000641241 7001_ $$0P:(DE-H253)PIP1033412$$aGloaguen, David$$b1 000641241 7001_ $$aLe Bourhis, Eric$$b2 000641241 7001_ $$0P:(DE-H253)PIP1033410$$aDubos, Pierre-Antoine$$b3 000641241 7001_ $$aMoya, Marie-José$$b4 000641241 7001_ $$0P:(DE-H253)PIP1010504$$aSchwartzkopf, Matthias$$b5 000641241 7001_ $$00000-0001-7146-6885$$aSnow, Tim$$b6 000641241 7001_ $$0P:(DE-H253)PIP1008378$$aSchneider, Konrad$$b7 000641241 7001_ $$0P:(DE-H253)PIP1023846$$aChang, Baobao$$b8 000641241 7001_ $$0P:(DE-H253)PIP1033415$$aJordana, Fabienne$$b9 000641241 7001_ $$00009-0002-5317-6993$$aTessier, Solène$$b10 000641241 7001_ $$00000-0001-7593-6928$$aTournier, Pierre$$b11 000641241 7001_ $$aParé, Arnaud$$b12 000641241 7001_ $$0P:(DE-H253)PIP1011371$$aWeiss, Pierre$$b13 000641241 7001_ $$0P:(DE-H253)PIP1088536$$aGeoffroy, Valérie$$b14 000641241 7001_ $$0P:(DE-H253)PIP1033143$$aGirault, Baptiste$$b15$$eCorresponding author 000641241 773__ $$0PERI:(DE-600)2378381-3$$a10.1016/j.jmbbm.2025.106998$$gVol. 168, p. 106998 -$$p106998$$tJournal of the mechanical behavior of biomedical materials$$v168$$x1751-6161$$y2025 000641241 8564_ $$uhttps://bib-pubdb1.desy.de/record/641241/files/1-s2.0-S1751616125001146-main.pdf$$yRestricted 000641241 8564_ $$uhttps://bib-pubdb1.desy.de/record/641241/files/1-s2.0-S1751616125001146-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000641241 909CO $$ooai:bib-pubdb1.desy.de:641241$$popenaire$$pVDB$$pec_fundedresources 000641241 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1033426$$aExternal Institute$$b0$$kExtern 000641241 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1033412$$aExternal Institute$$b1$$kExtern 000641241 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1033410$$aExternal Institute$$b3$$kExtern 000641241 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1010504$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY 000641241 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008378$$aExternal Institute$$b7$$kExtern 000641241 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1023846$$aExternal Institute$$b8$$kExtern 000641241 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1033415$$aExternal Institute$$b9$$kExtern 000641241 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1011371$$aExternal Institute$$b13$$kExtern 000641241 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1088536$$aExternal Institute$$b14$$kExtern 000641241 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1033143$$aExternal Institute$$b15$$kExtern 000641241 9131_ $$0G:(DE-HGF)POF4-633$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vLife Sciences – Building Blocks of Life: Structure and Function$$x0 000641241 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1 000641241 9141_ $$y2025 000641241 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-21 000641241 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-21 000641241 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-21 000641241 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-21 000641241 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-21 000641241 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-21 000641241 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0 000641241 9201_ $$0I:(DE-H253)FS-PETRA-D-20210408$$kFS-PETRA-D$$lPETRA-D$$x1 000641241 980__ $$ajournal 000641241 980__ $$aVDB 000641241 980__ $$aI:(DE-H253)HAS-User-20120731 000641241 980__ $$aI:(DE-H253)FS-PETRA-D-20210408 000641241 980__ $$aUNRESTRICTED