001     640691
005     20260129210219.0
024 7 _ |a 10.1103/PhysRevA.111.032612
|2 doi
024 7 _ |a Wang:2024jis
|2 INSPIRETeX
024 7 _ |a inspire:2819254
|2 inspire
024 7 _ |a 2469-9926
|2 ISSN
024 7 _ |a 2469-9942
|2 ISSN
024 7 _ |a 2469-9934
|2 ISSN
024 7 _ |a arXiv:2408.09083
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2025-04831
|2 datacite_doi
037 _ _ |a PUBDB-2025-04831
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a arXiv:2408.09083
|2 arXiv
088 _ _ |a RIKEN-iTHEMS-Report-25
|2 Other
100 1 _ |a Wang, Xiaoyang
|b 0
245 _ _ |a Imaginary Hamiltonian variational Ansatz for combinatorial optimization problems
260 _ _ |a Woodbury, NY
|c 2025
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1769691800_3464737
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 24 pages, 17 figures
520 _ _ |a Obtaining exact solutions to combinatorial optimization problems using classical computing is computationally expensive. The current tenet in the field is that quantum computers can address these problems more efficiently. While promising algorithms require fault-tolerant quantum hardware, variational algorithms have emerged as viable candidates for near-term devices. The success of these algorithms hinges on multiple factors, with the design of the Ansatz being of the utmost importance. It is known that popular approaches such as the quantum approximate optimization algorithm (QAOA) and quantum annealing suffer from adiabatic bottlenecks, which lead to either larger circuit depth or evolution time. On the other hand, the evolution time of imaginary-time evolution is bounded by the inverse energy gap of the Hamiltonian, which is constant for most noncritical physical systems. In this work we propose an imaginary Hamiltonian variational Ansatz (iHVA) inspired by quantum imaginary-time evolution to solve the MaxCut problem. We introduce a tree arrangement of the parametrized quantum gates, enabling the exact solution of arbitrary tree graphs using the one-round iHVA. For randomly generated D-regular graphs, we numerically demonstrate that the iHVA solves the MaxCut problem with a small constant number of rounds and sublinear depth, outperforming the QAOA, which requires rounds increasing with the graph size. Furthermore, our Ansatz solves the MaxCut problem exactly for graphs with up to 24 nodes and D≤5, whereas only approximate solutions can be derived by the classical near-optimal Goemans-Williamson algorithm. We validate our simulated results with hardware demonstrations on a graph with 67 nodes.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Chai, Yahui
|0 P:(DE-H253)PIP1102922
|b 1
|e Corresponding author
|u desy
700 1 _ |a Feng, Xu
|b 2
700 1 _ |a Guo, Yibin
|0 P:(DE-H253)PIP1104332
|b 3
700 1 _ |a Jansen, Karl
|0 P:(DE-H253)PIP1003636
|b 4
700 1 _ |a Tueysuez, Cenk
|0 P:(DE-H253)PIP1096564
|b 5
773 _ _ |a 10.1103/PhysRevA.111.032612
|g Vol. 111, no. 3, p. 032612
|0 PERI:(DE-600)2844156-4
|n 3
|p 032612
|t Physical review / A
|v 111
|y 2025
|x 2469-9926
787 0 _ |a Wang, Xiaoyang et.al.
|d 2025
|i IsParent
|0 PUBDB-2026-00585
|r arXiv:2408.09083 ; RIKEN-iTHEMS-Report-25
|t Imaginary Hamiltonian variational Ansatz for combinatorial optimization problems
856 4 _ |u https://bib-pubdb1.desy.de/record/640691/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/640691/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/640691/files/PhysRevA.111.032612.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/640691/files/PhysRevA.111.032612.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:640691
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1102922
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1104332
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1003636
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1096564
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2025-01-02
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
920 1 _ |0 I:(DE-H253)CQTA-20221102
|k CQTA
|l Centre f. Quantum Techno. a. Application
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)CQTA-20221102
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21