000640691 001__ 640691
000640691 005__ 20260129210219.0
000640691 0247_ $$2doi$$a10.1103/PhysRevA.111.032612
000640691 0247_ $$2INSPIRETeX$$aWang:2024jis
000640691 0247_ $$2inspire$$ainspire:2819254
000640691 0247_ $$2ISSN$$a2469-9926
000640691 0247_ $$2ISSN$$a2469-9942
000640691 0247_ $$2ISSN$$a2469-9934
000640691 0247_ $$2arXiv$$aarXiv:2408.09083
000640691 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-04831
000640691 037__ $$aPUBDB-2025-04831
000640691 041__ $$aEnglish
000640691 082__ $$a530
000640691 088__ $$2arXiv$$aarXiv:2408.09083
000640691 088__ $$2Other$$aRIKEN-iTHEMS-Report-25
000640691 1001_ $$aWang, Xiaoyang$$b0
000640691 245__ $$aImaginary Hamiltonian variational Ansatz for combinatorial optimization problems
000640691 260__ $$aWoodbury, NY$$bInst.$$c2025
000640691 3367_ $$2DRIVER$$aarticle
000640691 3367_ $$2DataCite$$aOutput Types/Journal article
000640691 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1769691800_3464737
000640691 3367_ $$2BibTeX$$aARTICLE
000640691 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000640691 3367_ $$00$$2EndNote$$aJournal Article
000640691 500__ $$a24 pages, 17 figures
000640691 520__ $$aObtaining exact solutions to combinatorial optimization problems using classical computing is computationally expensive. The current tenet in the field is that quantum computers can address these problems more efficiently. While promising algorithms require fault-tolerant quantum hardware, variational algorithms have emerged as viable candidates for near-term devices. The success of these algorithms hinges on multiple factors, with the design of the Ansatz being of the utmost importance. It is known that popular approaches such as the quantum approximate optimization algorithm (QAOA) and quantum annealing suffer from adiabatic bottlenecks, which lead to either larger circuit depth or evolution time. On the other hand, the evolution time of imaginary-time evolution is bounded by the inverse energy gap of the Hamiltonian, which is constant for most noncritical physical systems. In this work we propose an imaginary Hamiltonian variational Ansatz (iHVA) inspired by quantum imaginary-time evolution to solve the MaxCut problem. We introduce a tree arrangement of the parametrized quantum gates, enabling the exact solution of arbitrary tree graphs using the one-round iHVA. For randomly generated D-regular graphs, we numerically demonstrate that the iHVA solves the MaxCut problem with a small constant number of rounds and sublinear depth, outperforming the QAOA, which requires rounds increasing with the graph size. Furthermore, our Ansatz solves the MaxCut problem exactly for graphs with up to 24 nodes and D≤5, whereas only approximate solutions can be derived by the classical near-optimal Goemans-Williamson algorithm. We validate our simulated results with hardware demonstrations on a graph with 67 nodes.
000640691 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000640691 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
000640691 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000640691 7001_ $$0P:(DE-H253)PIP1102922$$aChai, Yahui$$b1$$eCorresponding author$$udesy
000640691 7001_ $$aFeng, Xu$$b2
000640691 7001_ $$0P:(DE-H253)PIP1104332$$aGuo, Yibin$$b3
000640691 7001_ $$0P:(DE-H253)PIP1003636$$aJansen, Karl$$b4
000640691 7001_ $$0P:(DE-H253)PIP1096564$$aTueysuez, Cenk$$b5
000640691 773__ $$0PERI:(DE-600)2844156-4$$a10.1103/PhysRevA.111.032612$$gVol. 111, no. 3, p. 032612$$n3$$p032612$$tPhysical review / A$$v111$$x2469-9926$$y2025
000640691 7870_ $$0PUBDB-2026-00585$$aWang, Xiaoyang et.al.$$d2025$$iIsParent$$rarXiv:2408.09083 ; RIKEN-iTHEMS-Report-25$$tImaginary Hamiltonian variational Ansatz for combinatorial optimization problems
000640691 8564_ $$uhttps://bib-pubdb1.desy.de/record/640691/files/HTML-Approval_of_scientific_publication.html
000640691 8564_ $$uhttps://bib-pubdb1.desy.de/record/640691/files/PDF-Approval_of_scientific_publication.pdf
000640691 8564_ $$uhttps://bib-pubdb1.desy.de/record/640691/files/PhysRevA.111.032612.pdf$$yOpenAccess
000640691 8564_ $$uhttps://bib-pubdb1.desy.de/record/640691/files/PhysRevA.111.032612.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000640691 909CO $$ooai:bib-pubdb1.desy.de:640691$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000640691 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1102922$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000640691 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1104332$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000640691 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003636$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000640691 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1096564$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000640691 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000640691 9141_ $$y2025
000640691 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000640691 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000640691 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2025-01-02
000640691 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000640691 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
000640691 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
000640691 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000640691 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000640691 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
000640691 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000640691 9201_ $$0I:(DE-H253)CQTA-20221102$$kCQTA$$lCentre f. Quantum Techno. a. Application$$x0
000640691 980__ $$ajournal
000640691 980__ $$aVDB
000640691 980__ $$aUNRESTRICTED
000640691 980__ $$aI:(DE-H253)CQTA-20221102
000640691 9801_ $$aFullTexts