001     640497
005     20251120212636.0
024 7 _ |a 10.1038/s41565-025-01961-w
|2 doi
024 7 _ |a 1748-3387
|2 ISSN
024 7 _ |a 1748-3395
|2 ISSN
037 _ _ |a PUBDB-2025-04819
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Moreno Herrero, Jorge
|b 0
245 _ _ |a Compact polyethylenimine-complexed mRNA vaccines
260 _ _ |a London [u.a.]
|c 2025
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1763638650_1728937
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Waiting for fulltext
520 _ _ |a Here we describe formulations comprising individual, polymer-complexed self-amplifying RNA (saRNA) molecules, designed for vaccination against infectious diseases and other prophylactic and therapeutic applications. When exposed to a large excess of the cationic polymer polyethylenimine (PEI), the single saRNA molecules in solution reorganize from an extended to a globular organization, characterized by a high packing density, low polymer mass fraction and, consequently, a very small size of the polyplex nanoparticles of about 30 nm. This format of PEI-complexed saRNA exhibits enhanced biological activity in comparison with previously described saRNA/PEI formulations, both in vitro and in vivo. In vaccination models, relevant immune responses at lower doses are achieved, offering potential advantages for practical use. We found that the single PEI-complexed RNA molecules are also present in conventional formulations to some degree. The direct correlation between the single-molecule fraction with activity suggests that it is this format that predominantly contributes to activity in the different formulation types. Complexation is driven by mechanisms of self-assembly between oppositely charged polyelectrolytes, making this protocol broadly applicable to various cationic polymers and RNA constructs. With their small size and good stability in biofluids, these compacted RNA molecules are also promising for the systemic delivery of genetic material to compartments that are difficult to reach with larger particles.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a SINE2020 - World class Science and Innovation with Neutrons in Europe 2020 – SINE2020 (654000)
|0 G:(EU-Grant)654000
|c 654000
|f H2020-INFRADEV-1-2014-1
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P12
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P12-20150101
|6 EXP:(DE-H253)P-P12-20150101
|x 0
700 1 _ |a Stahl, Theo B.
|b 1
700 1 _ |a Erbar, Stephanie
|0 0000-0003-1898-4776
|b 2
700 1 _ |a Maxeiner, Konrad
|b 3
700 1 _ |a Schlegel, Anne
|b 4
700 1 _ |a Bacic, Tijana
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Schumacher, Jens
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Cavalcanti, Leide P.
|0 0000-0002-0408-0058
|b 7
700 1 _ |a Schroer, Martin A.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Svergun, Dmitri I.
|b 9
700 1 _ |a Sahin, Ugur
|0 0000-0003-0363-1564
|b 10
|e Corresponding author
700 1 _ |a Haas, Heinrich
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
773 _ _ |a 10.1038/s41565-025-01961-w
|g Vol. 20, no. 9, p. 1323 - 1331
|0 PERI:(DE-600)2254964-X
|n 9
|p 1323 - 1331
|t Nature nanotechnology
|v 20
|y 2025
|x 1748-3387
856 4 _ |u https://www.nature.com/articles/s41565-025-01961-w#article-info
856 4 _ |u https://bib-pubdb1.desy.de/record/640497/files/Compact%20polyethylenimine%20complexed%20mRNA%20vaccines.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/640497/files/Compact%20polyethylenimine%20complexed%20mRNA%20vaccines.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:640497
|p openaire
|p VDB
|p ec_fundedresources
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-11
|w ger
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2024-12-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT NANOTECHNOL : 2022
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-11
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b NAT NANOTECHNOL : 2022
|d 2024-12-11
920 1 _ |0 I:(DE-H253)EMBL-User-20120814
|k EMBL-User
|l EMBL-User
|x 0
920 1 _ |0 I:(DE-H253)EMBL-20120731
|k EMBL
|l EMBL
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)EMBL-User-20120814
980 _ _ |a I:(DE-H253)EMBL-20120731
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21