000640497 001__ 640497
000640497 005__ 20251120212636.0
000640497 0247_ $$2doi$$a10.1038/s41565-025-01961-w
000640497 0247_ $$2ISSN$$a1748-3387
000640497 0247_ $$2ISSN$$a1748-3395
000640497 037__ $$aPUBDB-2025-04819
000640497 041__ $$aEnglish
000640497 082__ $$a600
000640497 1001_ $$aMoreno Herrero, Jorge$$b0
000640497 245__ $$aCompact polyethylenimine-complexed mRNA vaccines
000640497 260__ $$aLondon [u.a.]$$bNature Publishing Group$$c2025
000640497 3367_ $$2DRIVER$$aarticle
000640497 3367_ $$2DataCite$$aOutput Types/Journal article
000640497 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1763638650_1728937
000640497 3367_ $$2BibTeX$$aARTICLE
000640497 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000640497 3367_ $$00$$2EndNote$$aJournal Article
000640497 500__ $$aWaiting for fulltext 
000640497 520__ $$aHere we describe formulations comprising individual, polymer-complexed self-amplifying RNA (saRNA) molecules, designed for vaccination against infectious diseases and other prophylactic and therapeutic applications. When exposed to a large excess of the cationic polymer polyethylenimine (PEI), the single saRNA molecules in solution reorganize from an extended to a globular organization, characterized by a high packing density, low polymer mass fraction and, consequently, a very small size of the polyplex nanoparticles of about 30 nm. This format of PEI-complexed saRNA exhibits enhanced biological activity in comparison with previously described saRNA/PEI formulations, both in vitro and in vivo. In vaccination models, relevant immune responses at lower doses are achieved, offering potential advantages for practical use. We found that the single PEI-complexed RNA molecules are also present in conventional formulations to some degree. The direct correlation between the single-molecule fraction with activity suggests that it is this format that predominantly contributes to activity in the different formulation types. Complexation is driven by mechanisms of self-assembly between oppositely charged polyelectrolytes, making this protocol broadly applicable to various cationic polymers and RNA constructs. With their small size and good stability in biofluids, these compacted RNA molecules are also promising for the systemic delivery of genetic material to compartments that are difficult to reach with larger particles.
000640497 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000640497 536__ $$0G:(EU-Grant)654000$$aSINE2020 - World class Science and Innovation with Neutrons in Europe 2020 – SINE2020 (654000)$$c654000$$fH2020-INFRADEV-1-2014-1$$x1
000640497 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000640497 693__ $$0EXP:(DE-H253)P-P12-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P12-20150101$$aPETRA III$$fPETRA Beamline P12$$x0
000640497 7001_ $$aStahl, Theo B.$$b1
000640497 7001_ $$00000-0003-1898-4776$$aErbar, Stephanie$$b2
000640497 7001_ $$aMaxeiner, Konrad$$b3
000640497 7001_ $$aSchlegel, Anne$$b4
000640497 7001_ $$0P:(DE-HGF)0$$aBacic, Tijana$$b5
000640497 7001_ $$0P:(DE-HGF)0$$aSchumacher, Jens$$b6
000640497 7001_ $$00000-0002-0408-0058$$aCavalcanti, Leide P.$$b7
000640497 7001_ $$0P:(DE-HGF)0$$aSchroer, Martin A.$$b8
000640497 7001_ $$aSvergun, Dmitri I.$$b9
000640497 7001_ $$00000-0003-0363-1564$$aSahin, Ugur$$b10$$eCorresponding author
000640497 7001_ $$0P:(DE-HGF)0$$aHaas, Heinrich$$b11$$eCorresponding author
000640497 773__ $$0PERI:(DE-600)2254964-X$$a10.1038/s41565-025-01961-w$$gVol. 20, no. 9, p. 1323 - 1331$$n9$$p1323 - 1331$$tNature nanotechnology$$v20$$x1748-3387$$y2025
000640497 8564_ $$uhttps://www.nature.com/articles/s41565-025-01961-w#article-info
000640497 8564_ $$uhttps://bib-pubdb1.desy.de/record/640497/files/Compact%20polyethylenimine%20complexed%20mRNA%20vaccines.pdf$$yRestricted
000640497 8564_ $$uhttps://bib-pubdb1.desy.de/record/640497/files/Compact%20polyethylenimine%20complexed%20mRNA%20vaccines.pdf?subformat=pdfa$$xpdfa$$yRestricted
000640497 909CO $$ooai:bib-pubdb1.desy.de:640497$$popenaire$$pVDB$$pec_fundedresources
000640497 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000640497 9141_ $$y2025
000640497 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-11$$wger
000640497 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2024-12-11$$wger
000640497 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
000640497 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
000640497 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
000640497 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-11
000640497 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-11
000640497 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-11
000640497 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-11
000640497 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
000640497 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT NANOTECHNOL : 2022$$d2024-12-11
000640497 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-11
000640497 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-11
000640497 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bNAT NANOTECHNOL : 2022$$d2024-12-11
000640497 9201_ $$0I:(DE-H253)EMBL-User-20120814$$kEMBL-User$$lEMBL-User$$x0
000640497 9201_ $$0I:(DE-H253)EMBL-20120731$$kEMBL$$lEMBL$$x1
000640497 980__ $$ajournal
000640497 980__ $$aVDB
000640497 980__ $$aI:(DE-H253)EMBL-User-20120814
000640497 980__ $$aI:(DE-H253)EMBL-20120731
000640497 980__ $$aUNRESTRICTED