| Home > Publications database > Combining SAXS analysis and MD simulation to determine structure and hydration of ionizable lipid hexagonal phases > print |
| 001 | 640496 | ||
| 005 | 20251119161949.0 | ||
| 024 | 7 | _ | |a 10.1039/D5SM00666J |2 doi |
| 024 | 7 | _ | |a 1744-683X |2 ISSN |
| 024 | 7 | _ | |a 1744-6848 |2 ISSN |
| 024 | 7 | _ | |a 10.3204/PUBDB-2025-04818 |2 datacite_doi |
| 024 | 7 | _ | |a openalex:W4414473910 |2 openalex |
| 037 | _ | _ | |a PUBDB-2025-04818 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Philipp, Julian |0 P:(DE-H253)PIP1095046 |b 0 |
| 245 | _ | _ | |a Combining SAXS analysis and MD simulation to determine structure and hydration of ionizable lipid hexagonal phases |
| 260 | _ | _ | |a London |c 2025 |b Royal Soc. of Chemistry |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1763371803_3547203 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Cationic ionizable lipids (CILs) are fundamental components of inverse hexagonal (HII) lipid assemblies, which mediate the encapsulation and release of negatively charged mRNA through a pH-dependent mechanism. Since variations in the structure and composition of the HII phases can significantly impact the biological efficacy of the mRNA-carrying lipid nanoparticles (LNP), a comprehensive understanding of the ionizable lipid HII phases is necessary. We present an integrated approach combining small-angle X-ray scattering (SAXS) experiments, molecular dynamics (MD) simulations and a continuum model to elucidate lipid distribution and water content within HII phases. Our results indicate strong agreement between structures derived from MD simulations and SAXS data. To this end, we introduce a method to correct for periodic boundary artifacts when computing scattering profiles from MD simulations. This enables direct, model-free comparisons between experimental and simulated data, enhancing the reliability of structural interpretations, specifically the water content of the HII phases. Next, we developed a continuum model to extend structural analysis to CIL HII phases for which MD data is unavailable. This integrative framework not only provides molecular-level insights into the ionizable lipid HII mesophase but also enables the prediction of hydration properties across different CIL compositions. The different approaches consistently yield water contents that seem to correlate with the lipids’ transfection efficiencies. By bridging experimental and simulation data, our approach offers a powerful tool for the rational design and optimization of lipid nanoparticles, potentially linking a lower water content with an increased therapeutic performance. |
| 536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 0 |
| 536 | _ | _ | |a DFG project G:(GEPRIS)440719683 - Hochleistungscompute-Cluster (440719683) |0 G:(GEPRIS)440719683 |c 440719683 |x 1 |
| 536 | _ | _ | |a SINE2020 - World class Science and Innovation with Neutrons in Europe 2020 – SINE2020 (654000) |0 G:(EU-Grant)654000 |c 654000 |f H2020-INFRADEV-1-2014-1 |x 2 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
| 693 | _ | _ | |a PETRA III |f PETRA Beamline P12 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P12-20150101 |6 EXP:(DE-H253)P-P12-20150101 |x 0 |
| 693 | _ | _ | |a PETRA III |f PETRA Beamline P62 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P62-20221101 |6 EXP:(DE-H253)P-P62-20221101 |x 1 |
| 700 | 1 | _ | |a Sudarsan, Akhil |b 1 |
| 700 | 1 | _ | |a Kostyurina, Ekaterina |b 2 |
| 700 | 1 | _ | |a Meklesh, Viktoriia |b 3 |
| 700 | 1 | _ | |a Berglund, Monica |b 4 |
| 700 | 1 | _ | |a Rappolt, Michael |0 0000-0001-9942-3035 |b 5 |
| 700 | 1 | _ | |a Westergren, Jan |b 6 |
| 700 | 1 | _ | |a Lindfors, Lennart |b 7 |
| 700 | 1 | _ | |a Schwierz, Nadine |0 0000-0003-4191-2674 |b 8 |
| 700 | 1 | _ | |a Rädler, Joachim O. |0 P:(DE-H253)PIP1095170 |b 9 |e Corresponding author |
| 773 | _ | _ | |a 10.1039/D5SM00666J |g Vol. 21, no. 41, p. 8049 - 8059 |0 PERI:(DE-600)2191476-X |n 41 |p 8049 - 8059 |t Soft matter |v 21 |y 2025 |x 1744-683X |
| 856 | 4 | _ | |u https://pubs.rsc.org/en/content/articlelanding/2025/sm/d5sm00666j |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/640496/files/Combining%20SAXS%20analysis%20and%20MD%20simulation%20to%20determine%20structure%20and%20hydration%20of%20ionizable%20lipid%20hexagonal%20phases.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/640496/files/Combining%20SAXS%20analysis%20and%20MD%20simulation%20to%20determine%20structure%20and%20hydration%20of%20ionizable%20lipid%20hexagonal%20phases.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:bib-pubdb1.desy.de:640496 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
| 910 | 1 | _ | |a European Molecular Biology Laboratory |0 I:(DE-588b)235011-7 |k EMBL |b 0 |6 P:(DE-H253)PIP1095046 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1095046 |
| 910 | 1 | _ | |a European Molecular Biology Laboratory |0 I:(DE-588b)235011-7 |k EMBL |b 9 |6 P:(DE-H253)PIP1095170 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 9 |6 P:(DE-H253)PIP1095170 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-07 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-07 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-07 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2025-01-07 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SOFT MATTER : 2022 |d 2025-01-07 |
| 915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2025-01-07 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-07 |
| 920 | 1 | _ | |0 I:(DE-H253)EMBL-User-20120814 |k EMBL-User |l EMBL-User |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-H253)EMBL-User-20120814 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|