000640496 001__ 640496
000640496 005__ 20251119161949.0
000640496 0247_ $$2doi$$a10.1039/D5SM00666J
000640496 0247_ $$2ISSN$$a1744-683X
000640496 0247_ $$2ISSN$$a1744-6848
000640496 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-04818
000640496 0247_ $$2openalex$$aopenalex:W4414473910
000640496 037__ $$aPUBDB-2025-04818
000640496 041__ $$aEnglish
000640496 082__ $$a530
000640496 1001_ $$0P:(DE-H253)PIP1095046$$aPhilipp, Julian$$b0
000640496 245__ $$aCombining SAXS analysis and MD simulation to determine structure and hydration of ionizable lipid hexagonal phases
000640496 260__ $$aLondon$$bRoyal Soc. of Chemistry$$c2025
000640496 3367_ $$2DRIVER$$aarticle
000640496 3367_ $$2DataCite$$aOutput Types/Journal article
000640496 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1763371803_3547203
000640496 3367_ $$2BibTeX$$aARTICLE
000640496 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000640496 3367_ $$00$$2EndNote$$aJournal Article
000640496 520__ $$aCationic ionizable lipids (CILs) are fundamental components of inverse hexagonal (HII) lipid assemblies, which mediate the encapsulation and release of negatively charged mRNA through a pH-dependent mechanism. Since variations in the structure and composition of the HII phases can significantly impact the biological efficacy of the mRNA-carrying lipid nanoparticles (LNP), a comprehensive understanding of the ionizable lipid HII phases is necessary. We present an integrated approach combining small-angle X-ray scattering (SAXS) experiments, molecular dynamics (MD) simulations and a continuum model to elucidate lipid distribution and water content within HII phases. Our results indicate strong agreement between structures derived from MD simulations and SAXS data. To this end, we introduce a method to correct for periodic boundary artifacts when computing scattering profiles from MD simulations. This enables direct, model-free comparisons between experimental and simulated data, enhancing the reliability of structural interpretations, specifically the water content of the HII phases. Next, we developed a continuum model to extend structural analysis to CIL HII phases for which MD data is unavailable. This integrative framework not only provides molecular-level insights into the ionizable lipid HII mesophase but also enables the prediction of hydration properties across different CIL compositions. The different approaches consistently yield water contents that seem to correlate with the lipids’ transfection efficiencies. By bridging experimental and simulation data, our approach offers a powerful tool for the rational design and optimization of lipid nanoparticles, potentially linking a lower water content with an increased therapeutic performance.
000640496 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000640496 536__ $$0G:(GEPRIS)440719683$$aDFG project G:(GEPRIS)440719683 - Hochleistungscompute-Cluster (440719683)$$c440719683$$x1
000640496 536__ $$0G:(EU-Grant)654000$$aSINE2020 - World class Science and Innovation with Neutrons in Europe 2020 – SINE2020 (654000)$$c654000$$fH2020-INFRADEV-1-2014-1$$x2
000640496 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000640496 693__ $$0EXP:(DE-H253)P-P12-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P12-20150101$$aPETRA III$$fPETRA Beamline P12$$x0
000640496 693__ $$0EXP:(DE-H253)P-P62-20221101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P62-20221101$$aPETRA III$$fPETRA Beamline P62$$x1
000640496 7001_ $$aSudarsan, Akhil$$b1
000640496 7001_ $$aKostyurina, Ekaterina$$b2
000640496 7001_ $$aMeklesh, Viktoriia$$b3
000640496 7001_ $$aBerglund, Monica$$b4
000640496 7001_ $$00000-0001-9942-3035$$aRappolt, Michael$$b5
000640496 7001_ $$aWestergren, Jan$$b6
000640496 7001_ $$aLindfors, Lennart$$b7
000640496 7001_ $$00000-0003-4191-2674$$aSchwierz, Nadine$$b8
000640496 7001_ $$0P:(DE-H253)PIP1095170$$aRädler, Joachim O.$$b9$$eCorresponding author
000640496 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/D5SM00666J$$gVol. 21, no. 41, p. 8049 - 8059$$n41$$p8049 - 8059$$tSoft matter$$v21$$x1744-683X$$y2025
000640496 8564_ $$uhttps://pubs.rsc.org/en/content/articlelanding/2025/sm/d5sm00666j
000640496 8564_ $$uhttps://bib-pubdb1.desy.de/record/640496/files/Combining%20SAXS%20analysis%20and%20MD%20simulation%20to%20determine%20structure%20and%20hydration%20of%20ionizable%20lipid%20hexagonal%20phases.pdf$$yOpenAccess
000640496 8564_ $$uhttps://bib-pubdb1.desy.de/record/640496/files/Combining%20SAXS%20analysis%20and%20MD%20simulation%20to%20determine%20structure%20and%20hydration%20of%20ionizable%20lipid%20hexagonal%20phases.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000640496 909CO $$ooai:bib-pubdb1.desy.de:640496$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000640496 9101_ $$0I:(DE-588b)235011-7$$6P:(DE-H253)PIP1095046$$aEuropean Molecular Biology Laboratory$$b0$$kEMBL
000640496 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1095046$$aExternal Institute$$b0$$kExtern
000640496 9101_ $$0I:(DE-588b)235011-7$$6P:(DE-H253)PIP1095170$$aEuropean Molecular Biology Laboratory$$b9$$kEMBL
000640496 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1095170$$aExternal Institute$$b9$$kExtern
000640496 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000640496 9141_ $$y2025
000640496 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
000640496 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
000640496 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000640496 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07
000640496 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
000640496 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
000640496 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-07
000640496 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000640496 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFT MATTER : 2022$$d2025-01-07
000640496 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2025-01-07$$wger
000640496 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
000640496 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
000640496 9201_ $$0I:(DE-H253)EMBL-User-20120814$$kEMBL-User$$lEMBL-User$$x0
000640496 980__ $$ajournal
000640496 980__ $$aVDB
000640496 980__ $$aUNRESTRICTED
000640496 980__ $$aI:(DE-H253)EMBL-User-20120814
000640496 9801_ $$aFullTexts