001     639659
005     20260202210333.0
024 7 _ |a 10.1371/journal.pcbi.1013596
|2 doi
024 7 _ |a 1553-734X
|2 ISSN
024 7 _ |a 1553-7358
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-04616
|2 datacite_doi
037 _ _ |a PUBDB-2025-04616
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Mello, Victor Hugo
|0 0000-0003-0657-0904
|b 0
245 _ _ |a Elastic analysis bridges structure and dynamics of an AAA+ molecular motor
260 _ _ |a San Francisco, Calif.
|c 2025
|b Public Library of Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1770041270_3939688
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Proteins carry out cellular functions by changing their structure among a few conformations, each characterised by a different energy level. Therefore, structural changes, energy transformations, and protein function are intimately related. Despite its central importance, this relationship remains elusive. For example, while many hexameric ATPase motors are known to function using a hand-over-hand alternation of subunits, how energy transduction throughout the assembly’s structure drives the hand-over-hand mechanism is not known. In this work, we unravel the energetic basis of hand-over-hand in a model AAA+ motor, RuvB. To do so, we develop a general method to compute the residue-scale elastic pseudoenergy due to structure changes and apply it to RuvB structures, recently resolved through cryo-EM. This allows us to quantify how progression through RuvB’s mechanochemical cycle translates into residue-scale energy transduction. In particular, we find that DNA binding is associated with overcoming a high energy barrier. This is possible through inter-subunit transmission of energy, and ultimately driven by nucleotide exchange. Furthermore, we show how this structure-inferred energetic quantification can be integrated into a non-equilibrium model of AAA+ assembly dynamics, consistent with single-molecule biophysics measurements. Overall, our work elucidates the energetic basis for the hand-over-hand mechanism in RuvB’s cycle. Besides, it presents a generally applicable methodology for studying the energetics of conformational cycles in other proteins, allowing to quantitatively bridge data from structural biology and single-molecule biophysics.
536 _ _ |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)
|0 G:(DE-HGF)POF4-633
|c POF4-633
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Wald, Jiri
|0 P:(DE-H253)PIP1083333
|b 1
700 1 _ |a Marlovits, Thomas
|0 P:(DE-H253)PIP1021412
|b 2
700 1 _ |a Sartori, Pablo
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
773 _ _ |a 10.1371/journal.pcbi.1013596
|g Vol. 21, no. 10, p. e1013596 -
|0 PERI:(DE-600)2193340-6
|n 10
|p e1013596 -
|t PLoS Computational Biology
|v 21
|y 2025
|x 1553-734X
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/639659/files/journal.pcbi.1013596.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/639659/files/journal.pcbi.1013596.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:639659
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 1
|6 P:(DE-H253)PIP1083333
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1083333
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1083333
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 2
|6 P:(DE-H253)PIP1021412
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1021412
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-633
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Life Sciences – Building Blocks of Life: Structure and Function
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS COMPUT BIOL : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-02-08T09:42:16Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-02-08T09:42:16Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-16
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
920 1 _ |0 I:(DE-H253)CSSB-UKE-TM-20210520
|k CSSB-UKE-TM
|l CSSB-UKE-TM
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)CSSB-UKE-TM-20210520
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21