000639478 001__ 639478
000639478 005__ 20251203211340.0
000639478 0247_ $$2doi$$a10.3390/biom15111488
000639478 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-04564
000639478 037__ $$aPUBDB-2025-04564
000639478 041__ $$aEnglish
000639478 082__ $$a570
000639478 1001_ $$aSchmidt, Christina$$b0
000639478 245__ $$aStandard Sample Preparation for Serial Femtosecond Crystallography
000639478 260__ $$aBasel$$bMDPI$$c2025
000639478 3367_ $$2DRIVER$$aarticle
000639478 3367_ $$2DataCite$$aOutput Types/Journal article
000639478 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1764748778_2894254
000639478 3367_ $$2BibTeX$$aARTICLE
000639478 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000639478 3367_ $$00$$2EndNote$$aJournal Article
000639478 520__ $$aAbstractThe development of serial crystallography (SX), including serial synchrotron crystallography (SSX) at synchrotron sources and serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs), has facilitated the collection of high-resolution diffraction data from micron-sized crystals, providing unique insights into the structures and dynamics of biomolecules at room temperature. Standard samples are essential for the commissioning of new XFEL instruments and the validation of experimental setups. In this review, we summarize currently used standard proteins and describe representative microcrystal preparation workflows for four widely adopted models, lysozyme, myoglobin, iq-mEmerald, and photoactive yellow protein (PYP), drawing on established methodologies and accumulated experience from their applications at the European XFEL. By consolidating existing knowledge and integrating protocols that have been systematically refined and optimized through our experimental efforts, this review aims to provide practical guidance for the serial crystallography community, thereby enhancing reproducibility and ensuring consistent experimental performance across facilities.Keywords:serial femtosecond crystallography; microcrystals; standard samples; protocol
000639478 536__ $$0G:(DE-HGF)POF4-6G13$$a6G13 - Accelerator of European XFEL (POF4-6G13)$$cPOF4-6G13$$fPOF IV$$x0
000639478 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000639478 693__ $$0EXP:(DE-H253)XFEL(machine)-20150101$$1EXP:(DE-H253)XFEL-20150101$$5EXP:(DE-H253)XFEL(machine)-20150101$$aXFEL$$eFacility (machine) XFEL$$x0
000639478 7001_ $$0P:(DE-H253)PIP1022131$$aLorenzen, Kristina$$b1
000639478 7001_ $$0P:(DE-H253)PIP1006337$$aSchulz, Joachim$$b2
000639478 7001_ $$0P:(DE-H253)PIP1015711$$aHan, Huijong$$b3$$eCorresponding author
000639478 773__ $$0PERI:(DE-600)2701262-1$$a10.3390/biom15111488$$gVol. 15, no. 11, p. 1488 -$$n11$$p1488 $$tBiomolecules$$v15$$x2218-273X$$y2025
000639478 8564_ $$uhttps://bib-pubdb1.desy.de/record/639478/files/20251023155255806.pdf
000639478 8564_ $$uhttps://bib-pubdb1.desy.de/record/639478/files/20251023155255806.pdf?subformat=pdfa$$xpdfa
000639478 8564_ $$uhttps://bib-pubdb1.desy.de/record/639478/files/biomolecules-15-01488.pdf$$yOpenAccess
000639478 8564_ $$uhttps://bib-pubdb1.desy.de/record/639478/files/biomolecules-15-01488.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000639478 8767_ $$83896788$$92025-10-17$$d2025-10-23$$eAPC$$jZahlung erfolgt$$zXFEL, Rechnung wurde von XFEL bezahlt (discount 15%)
000639478 909CO $$ooai:bib-pubdb1.desy.de:639478$$popenaire$$popen_access$$pOpenAPC$$pdriver$$pVDB$$popenCost$$pdnbdelivery
000639478 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1022131$$aEuropean XFEL$$b1$$kXFEL.EU
000639478 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1006337$$aEuropean XFEL$$b2$$kXFEL.EU
000639478 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1015711$$aEuropean XFEL$$b3$$kXFEL.EU
000639478 9131_ $$0G:(DE-HGF)POF4-6G13$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vAccelerator of European XFEL$$x0
000639478 9141_ $$y2025
000639478 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000639478 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000639478 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
000639478 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-11
000639478 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-11
000639478 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-11
000639478 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-11
000639478 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOMOLECULES : 2022$$d2024-12-11
000639478 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:31:02Z
000639478 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:31:02Z
000639478 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-11
000639478 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-11
000639478 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
000639478 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000639478 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-11
000639478 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-11
000639478 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBIOMOLECULES : 2022$$d2024-12-11
000639478 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
000639478 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000639478 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
000639478 9201_ $$0I:(DE-H253)XFEL_E2_SEC-20210408$$kXFEL_E2_SEC$$lSample Environment and Characterisation$$x0
000639478 980__ $$ajournal
000639478 980__ $$aVDB
000639478 980__ $$aUNRESTRICTED
000639478 980__ $$aI:(DE-H253)XFEL_E2_SEC-20210408
000639478 980__ $$aAPC
000639478 9801_ $$aAPC
000639478 9801_ $$aFullTexts