000639457 001__ 639457
000639457 005__ 20251204211122.0
000639457 0247_ $$2doi$$a10.1016/j.apcatb.2025.125798
000639457 0247_ $$2ISSN$$a0926-3373
000639457 0247_ $$2ISSN$$a1873-3883
000639457 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-04543
000639457 037__ $$aPUBDB-2025-04543
000639457 041__ $$aEnglish
000639457 082__ $$a540
000639457 1001_ $$0P:(DE-H253)PIP1021933$$aEngel, Robin$$b0$$eCorresponding author$$udesy
000639457 245__ $$aMechanistic insights into methanol production on Ni$_5$Ga$_3$ thin films: An in situ XPS and DFT study 
000639457 260__ $$aAmsterdam$$bElsevier$$c2026
000639457 3367_ $$2DRIVER$$aarticle
000639457 3367_ $$2DataCite$$aOutput Types/Journal article
000639457 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1764852609_318078
000639457 3367_ $$2BibTeX$$aARTICLE
000639457 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000639457 3367_ $$00$$2EndNote$$aJournal Article
000639457 520__ $$aThe intermetallic compound δ-Ni5Ga3 has emerged as a promising catalyst for CO2 hydrogenation to methanol, offering high selectivity at low-pressure operation, and enhanced stability compared to conventional Cu/ZnO catalysts. However, the fundamental understanding of its active sites, reaction mechanisms, and deactivation pathways remains incomplete, hindering its further development. In this study, we utilize well-defined δ-Ni5Ga3 thin film model catalysts synthesized via magnetron sputtering to investigate these aspects under realistic reaction conditions. We investigate the evolution of the catalyst with temperature employing in situ ambient pressure X-ray photoelectron spectroscopy (AP-XPS) at 300 mbar, microreactor activity measurements, temperature-programmed desorption (TPD), and density functional theory (DFT) calculations. Our experiments show the active catalyst as mostly metallic with only small amounts on oxidized gallium, which gradually reduces and gives way to an increased nickel-concentration at the surface at higher temperatures, accompanied by carbide-growth. We further observe the temperature-evolution of key intermediates, such as carboxyl, formate, and methoxy species. Based on these observations, we discuss distinct pathways for methanol synthesis and CO2 methanation, with methoxy formation correlating directly with methanol activity, as well as the deactivation mechanism. 
000639457 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000639457 536__ $$0G:(DE-HGF)2020_Join2-SWEDEN-DESY$$aSWEDEN-DESY - SWEDEN-DESY Collaboration (2020_Join2-SWEDEN-DESY)$$c2020_Join2-SWEDEN-DESY$$x1
000639457 536__ $$0G:(DE-H253)II-20211048-EC$$aFS-Proposal: II-20211048 EC (II-20211048-EC)$$cII-20211048-EC$$x2
000639457 536__ $$0G:(DE-H253)I-20221301-EC$$aFS-Proposal: I-20221301 EC (I-20221301-EC)$$cI-20221301-EC$$x3
000639457 536__ $$0G:(DE-H253)I-20230516-EC$$aFS-Proposal: I-20230516 EC (I-20230516-EC)$$cI-20230516-EC$$x4
000639457 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000639457 693__ $$0EXP:(DE-H253)P-P22-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P22-20150101$$aPETRA III$$fPETRA Beamline P22$$x0
000639457 7001_ $$0P:(DE-H253)PIP1104844$$aRomeggio, Filippo$$b1
000639457 7001_ $$00000-0002-4622-8946$$aOcampo-Restrepo, Vivianne K.$$b2
000639457 7001_ $$0P:(DE-H253)PIP1104899$$aSchouenborg, Jonathan F.$$b3
000639457 7001_ $$0P:(DE-H253)PIP1104900$$aBilleter, Emanuel$$b4
000639457 7001_ $$0P:(DE-H253)PIP1086527$$aSoldemo, Markus$$b5
000639457 7001_ $$0P:(DE-H253)PIP1031624$$aDegerman, David$$b6
000639457 7001_ $$0P:(DE-H253)PIP1096151$$aGarcía-Martínez, Fernando$$b7
000639457 7001_ $$aKibsgaard, Jakob$$b8
000639457 7001_ $$aChorkendorff, Ib$$b9
000639457 7001_ $$aNørskov, Jens K.$$b10
000639457 7001_ $$0P:(DE-H253)PIP1016086$$aDamsgaard, Christian Danvad$$b11
000639457 7001_ $$0P:(DE-H253)PIP1010663$$aNilsson, Anders$$b12
000639457 7001_ $$0P:(DE-H253)PIP1021178$$aLömker, Patrick$$b13
000639457 773__ $$0PERI:(DE-600)2017331-3$$a10.1016/j.apcatb.2025.125798$$gVol. 381, p. 125798 -$$p125798 $$tApplied catalysis / B$$v381$$x0926-3373$$y2026
000639457 8564_ $$uhttps://bib-pubdb1.desy.de/record/639457/files/Angew%20Chem%20Int%20Ed%20-%202025%20-%20Davies%20-%20Insight%20into%20the%20Carbon%20Monoxide%20Reduction%20Reaction%20on%20Cu%20111%20from%20Operando.pdf$$yOpenAccess
000639457 8564_ $$uhttps://bib-pubdb1.desy.de/record/639457/files/Angew%20Chem%20Int%20Ed%20-%202025%20-%20Davies%20-%20Insight%20into%20the%20Carbon%20Monoxide%20Reduction%20Reaction%20on%20Cu%20111%20from%20Operando.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000639457 909CO $$ooai:bib-pubdb1.desy.de:639457$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000639457 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1021933$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000639457 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1021933$$aEuropean XFEL$$b0$$kXFEL.EU
000639457 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1104844$$aExternal Institute$$b1$$kExtern
000639457 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1104899$$aExternal Institute$$b3$$kExtern
000639457 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1104900$$aExternal Institute$$b4$$kExtern
000639457 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1086527$$aExternal Institute$$b5$$kExtern
000639457 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1031624$$aExternal Institute$$b6$$kExtern
000639457 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1096151$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000639457 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1096151$$aExternal Institute$$b7$$kExtern
000639457 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1016086$$aExternal Institute$$b11$$kExtern
000639457 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1010663$$aExternal Institute$$b12$$kExtern
000639457 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1021178$$aExternal Institute$$b13$$kExtern
000639457 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000639457 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-06
000639457 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-06
000639457 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-06
000639457 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000639457 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-06
000639457 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bAPPL CATAL B-ENVIRON : 2022$$d2025-01-06
000639457 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL CATAL B-ENVIRON : 2022$$d2025-01-06
000639457 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-06
000639457 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-06
000639457 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000639457 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-06
000639457 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-06
000639457 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-06
000639457 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-06
000639457 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000639457 980__ $$ajournal
000639457 980__ $$aVDB
000639457 980__ $$aUNRESTRICTED
000639457 980__ $$aI:(DE-H253)HAS-User-20120731
000639457 9801_ $$aFullTexts