001     639413
005     20251202213755.0
024 7 _ |a 10.1038/s41467-025-61740-y
|2 doi
024 7 _ |a 10.3204/PUBDB-2025-04507
|2 datacite_doi
037 _ _ |a PUBDB-2025-04507
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Chu, Xingyuan
|0 P:(DE-H253)PIP1101476
|b 0
245 _ _ |a Hydrate-melt electrolyte design for aqueous aluminium-bromine batteries with enhanced energy-power merits
260 _ _ |a [London]
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1764681420_1727461
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Aluminium-based aqueous batteries hold promises for next-generation sustainable and large-scale energy storage due to the favorable metrics of Al and water-based electrolytes. However, the performance of current aluminium-based aqueous batteries falls significantly below theoretical expectations, with a critical bottleneck of realizing cathodes with high areal capacities. Herein, we present a hydrate-melt electrolyte design utilizing cost-effective AlCl$_3$ and organic halide salts, which enables the demonstration of aqueous Al-Br batteries with enhanced energy-power characteristics. The optimal electrolyte features suppressed water activity and loosely bound halogen anions, attributed to its unique electrolyte structure, where the majority of water molecules engage in robust ion solvation (>98% as suggested by simulations) and halogen anions reside in the outer solvation sheath of cations. These distinctive features ensure good compatibility of the electrolyte with the reversible Br$^−$/Br$^0$/Br$^+$ conversion, enabling cathodes with a high areal capacity of 5 mAh cm$^{−2}$. Besides, the electrolyte allows for Zn-Al alloying/de-alloying with minimal polarization (around 100 mV at 5 mA cm$^{−2}$) and a smooth alloy surface. The assembled Al-Br cell delivers an energy density (267 Wh L$^{−1}$, based on the volume of anode, cathode and separator) comparable to commercial Li-ion batteries and a substantial power density (1069 W L$^{−1}$) approaching electrochemical capacitors.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)417590517 - SFB 1415: Chemie der synthetischen zweidimensionalen Materialien (417590517)
|0 G:(GEPRIS)417590517
|c 417590517
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P62
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P62-20221101
|6 EXP:(DE-H253)P-P62-20221101
|x 0
693 _ _ |a PETRA III
|f PETRA Beamline P65
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P65-20150101
|6 EXP:(DE-H253)P-P65-20150101
|x 1
700 1 _ |a Du, Jingwei
|0 P:(DE-H253)PIP1098080
|b 1
700 1 _ |a Zhang, Jiaxu
|0 P:(DE-H253)PIP1100471
|b 2
700 1 _ |a Li, Xiaodong
|0 P:(DE-H253)PIP1080044
|b 3
700 1 _ |a Liu, Xiaohui
|b 4
700 1 _ |a Wang, Yongkang
|0 0009-0007-4246-024X
|b 5
700 1 _ |a Hunger, Johannes
|0 0000-0002-4419-5220
|b 6
700 1 _ |a Morag, Ahiud
|0 P:(DE-H253)PIP1103005
|b 7
700 1 _ |a Liu, Jinxin
|0 0000-0002-3939-6853
|b 8
700 1 _ |a Guo, Quanquan
|0 P:(DE-H253)PIP1106368
|b 9
700 1 _ |a Li, Dongqi
|0 P:(DE-H253)PIP1092232
|b 10
700 1 _ |a Han, Yu
|b 11
700 1 _ |a Bonn, Mischa
|0 0000-0001-6851-8453
|b 12
700 1 _ |a Feng, Xinliang
|0 P:(DE-H253)PIP1081776
|b 13
|e Corresponding author
700 1 _ |a Yu, Minghao
|0 P:(DE-H253)PIP1083931
|b 14
|e Corresponding author
773 _ _ |a 10.1038/s41467-025-61740-y
|g Vol. 16, no. 1, p. 6329
|0 PERI:(DE-600)2553671-0
|n 1
|p 6329
|t Nature Communications
|v 16
|y 2025
|x 2041-1723
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/639413/files/s41467-025-61740-y.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/639413/files/s41467-025-61740-y.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:639413
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1101476
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1098080
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1100471
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 3
|6 P:(DE-H253)PIP1080044
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1080044
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1103005
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1106368
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1092232
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 13
|6 P:(DE-H253)PIP1081776
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 14
|6 P:(DE-H253)PIP1083931
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-30T07:48:07Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21