001     639378
005     20251119161929.0
024 7 _ |a 10.1021/acssuschemeng.5c00761
|2 doi
024 7 _ |a 10.3204/PUBDB-2025-04472
|2 datacite_doi
024 7 _ |a openalex:W4411326363
|2 openalex
037 _ _ |a PUBDB-2025-04472
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Hadi, Seyed Ehsan
|0 P:(DE-H253)PIP1092708
|b 0
245 _ _ |a High-Performance and Energy-Efficient Nanolignocellulose Foams for Sustainable Technologies
260 _ _ |a Washington, DC
|c 2025
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1762956410_411132
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a There has been a recent surge of interest in biobased foams for applications ranging from building sustainability (insulation) to biomedicine, pharmaceutics, and electronics (scaffolds), with nanocellulose-based foams being particularly promising due to their porous and low-density structure. This study compares the production energy, structure, and properties of foams made from TEMPO-oxidized lignocellulose nanofibers (F$_{TOLCNF}$) derived from unbleached wood pulp, and TEMPO-oxidized cellulose nanofibers (F$_{TOLCNF}$) from bleached cellulose pulp. Additionally, the incorporation of tannic acid (TA) as a biobased additive is explored for its ability to enhance the mechanical strength of F$_{TOLCNF}$, contributing to improved performance. This builds upon the inherent advantages of F$_{TOLCNF}$, which not only demonstrate superior structural integrity and load-bearing capacity (specific Young’s modulus of 37.4 J g$^{–1}$, compared to 16.4 J g$^{–1}$ for TOLCNF) but also exhibit a higher yield during production due to the minimal processing required for unbleached pulp. Furthermore, F$_{TOLCNF}$ production requires about 18% less cumulative energy than F$_{TOLCNF}$ (27 vs 33 MJ kg$^{–1}$), largely owing to the energy-efficient preparation of TOLCNF from unbleached wood pulp. F$_{TOLCNF}$ also have a significantly lower cumulative energy demand (CED) compared to fossil-based alternatives like expanded polystyrene (EPS) and polyurethane (PU), highlighting their reduced environmental impact. Despite their lightweight nature, F$_{TOLCNF}$ exhibit competitive compressive strength, making them viable candidates for eco-friendly applications across various industries. Overall, this study demonstrates that F$_{TOLCNF}$ are an attractive alternative to other bio- and fossil-based foams, offering a balance of energy efficiency, higher yield, mechanical performance, and sustainability.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a FS-Proposal: I-20230270 EC (I-20230270-EC)
|0 G:(DE-H253)I-20230270-EC
|c I-20230270-EC
|x 2
536 _ _ |a SWEDEN-DESY - SWEDEN-DESY Collaboration (2020_Join2-SWEDEN-DESY)
|0 G:(DE-HGF)2020_Join2-SWEDEN-DESY
|c 2020_Join2-SWEDEN-DESY
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P62
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P62-20221101
|6 EXP:(DE-H253)P-P62-20221101
|x 0
700 1 _ |a Davoodi, Saeed
|0 P:(DE-H253)PIP1098197
|b 1
|e Corresponding author
700 1 _ |a Oliaei, Erfan
|0 P:(DE-H253)PIP1103287
|b 2
|e Corresponding author
700 1 _ |a Morsali, Mohammad
|0 0000-0001-8795-762X
|b 3
700 1 _ |a Åhl, Agnes
|0 P:(DE-H253)PIP1100394
|b 4
700 1 _ |a Nocerino, Elisabetta
|0 P:(DE-H253)PIP1097277
|b 5
700 1 _ |a Wang, Fengyang
|b 6
700 1 _ |a Andersson, Matilda
|0 0009-0007-2207-398X
|b 7
700 1 _ |a Lühder, Malwine
|0 P:(DE-H253)PIP1107689
|b 8
700 1 _ |a Coelho Conceicao, Andre Luiz
|0 P:(DE-H253)PIP1016756
|b 9
700 1 _ |a Sipponen, Mika Henrikki
|0 P:(DE-H253)PIP1098305
|b 10
700 1 _ |a Berglund, Lars A.
|0 P:(DE-H253)PIP1024236
|b 11
700 1 _ |a Bergström, Lennart
|0 P:(DE-H253)PIP1016458
|b 12
700 1 _ |a Lundell, Fredrik
|0 P:(DE-H253)PIP1018084
|b 13
|e Corresponding author
773 _ _ |a 10.1021/acssuschemeng.5c00761
|g Vol. 13, no. 25, p. 9467 - 9480
|0 PERI:(DE-600)2695697-4
|n 25
|p 9467 - 9480
|t ACS sustainable chemistry & engineering
|v 13
|y 2025
|x 2168-0485
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/639378/files/high-performance-and-energy-efficient-nanolignocellulose-foams-for-sustainable-technologies.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/639378/files/high-performance-and-energy-efficient-nanolignocellulose-foams-for-sustainable-technologies.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:639378
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1092708
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1098197
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1103287
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1100394
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1097277
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1107689
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 9
|6 P:(DE-H253)PIP1016756
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1016756
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1098305
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1024236
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 P:(DE-H253)PIP1016458
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 13
|6 P:(DE-H253)PIP1018084
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-17
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS SUSTAIN CHEM ENG : 2022
|d 2024-12-17
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS SUSTAIN CHEM ENG : 2022
|d 2024-12-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-17
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-17
920 1 _ |0 I:(DE-H253)FS-PETRA-D-20210408
|k FS-PETRA-D
|l PETRA-D
|x 0
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-PETRA-D-20210408
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21