TY - JOUR
AU - Sapnik, Adam F.
AU - Chater, Philip A.
AU - Keeble, Dean S.
AU - Evans, John S. O.
AU - Bertolotti, Federica
AU - Guagliardi, Antonietta
AU - Støckler, Lise J.
AU - Harbourne, Elodie A.
AU - Borup, Anders B.
AU - Silberg, Rebecca S.
AU - Descamps, Adrien
AU - Prescher, Clemens
AU - Klee, Benjamin D.
AU - Phelipeau, Axel
AU - Ullah, Imran
AU - Medina, Kárel G.
AU - Bird, Tobias A.
AU - Kaznelson, Viktoria
AU - Lynn, William
AU - Goodwin, Andrew L.
AU - Iversen, Bo B.
AU - Crepisson, Celine
AU - Bozin, Emil S.
AU - Jensen, Kirsten M. Ø.
AU - McBride, Emma E.
AU - Neder, Reinhard B.
AU - Robinson, Ian
AU - Wark, Justin S.
AU - Andrzejewski, Michał
AU - Boesenberg, Ulrike
AU - Brambrink, Erik
AU - Camarda, Carolina
AU - Cerantola, Valerio
AU - Goede, Sebastian
AU - Höppner, Hauke
AU - Humphries, Oliver S.
AU - Konopkova, Zuzana
AU - Kujala, Naresh
AU - Michelat, Thomas
AU - Nakatsutsumi, Motoaki
AU - Pelka, Alexander
AU - Preston, Thomas R.
AU - Randolph, Lisa
AU - Roeper, Michael
AU - Schmidt, Andreas
AU - Strohm, Cornelius
AU - Tang, Minxue
AU - Talkovski, Peter
AU - Zastrau, Ulf
AU - Appel, Karen
AU - Keen, David A.
TI - High-quality ultra-fast total scattering and pair distribution function data using an X-ray free-electron laser
JO - IUCrJ
VL - 12
IS - 5
SN - 2052-2525
CY - Chester
M1 - PUBDB-2025-04404
SP - 531 - 547
PY - 2025
AB - High-quality total scattering data, a key tool for understanding atomic-scale structure in disordered materials, require stable instrumentation and access to high momentum transfers. This is now routine at dedicated synchrotron instrumentation using high-energy X-ray beams, but it is very challenging to measure a total scattering dataset in less than a few microseconds. This limits their effectiveness for capturing structural changes that occur at the much faster timescales of atomic motion. Current X-ray free-electron lasers (XFELs) provide femtosecond-pulsed X-ray beams with maximum energies of ∼24 keV, giving the potential to measure total scattering and the attendant pair distribution functions (PDFs) on femtosecond timescales. We demonstrate that this potential has been realized using the HED scientific instrument at the European XFEL and present normalized total scattering data for 0.35 Å−1 < Q < 16.6 Å−1 and their PDFs from a broad spectrum of materials, including crystalline, nanocrystalline and amorphous solids, liquids and clusters in solution. We analyzed the data using a variety of methods, including Rietveld refinement, small-box PDF refinement, joint reciprocal–real-space refinement, cluster refinement and Debye scattering analysis. The resolution function of the setup is also characterized. We conclusively show that high-quality data can be obtained from a single ∼30 fs XFEL pulse for multiple different sample types. Our efforts not only significantly increase the existing maximum reported Q range for an S(Q) measured at an XFEL but also mean that XFELs are now a viable X-ray source for the broad community of people using reciprocal-space total scattering and PDF methods in their research.
LB - PUB:(DE-HGF)16
DO - DOI:10.1107/S205225252500538X
UR - https://bib-pubdb1.desy.de/record/639303
ER -