001     639244
005     20251119161909.0
024 7 _ |a 10.1002/2211-5463.70020
|2 doi
024 7 _ |a 10.3204/PUBDB-2025-04364
|2 datacite_doi
024 7 _ |a openalex:W4408972781
|2 openalex
037 _ _ |a PUBDB-2025-04364
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Schönherr, Robert
|b 0
245 _ _ |a Intracellular protein crystallization in living insect cells
260 _ _ |a Hoboken, NJ
|c 2025
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1760540017_521504
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Crystallization of recombinant proteins in living cells is an emerging approach complementing conventional crystallization techniques. Homogeneous microcrystals well suited for serial diffraction experiments at X-ray free-electron lasers and synchrotron sources can be produced in a quasi-native environment, without the need for target protein purification. Several protein structures have already been solved; however, exploiting the full potential of this approach requires a systematic and versatile screening strategy for intracellular crystal growth. Recently, we published InCellCryst, a streamlined pipeline for producing microcrystals within living insect cells. Here, we present the detailed protocol, including optimized target gene expression using a baculovirus vector system, crystal formation, detection, and serial X-ray diffraction directly in the cells. The specific environment within the different cellular compartments acts as a screening parameter to maximize the probability of crystal growth. If successful, diffraction data can be collected 24 days after the start of target gene cloning.
536 _ _ |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)
|0 G:(DE-HGF)POF4-633
|c POF4-633
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)49701054 - EXC 306: Entzündungen an Grenzflächen (49701054)
|0 G:(GEPRIS)49701054
|c 49701054
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Eichler, Nina
|b 1
700 1 _ |a Sornaly, Fatama A.
|b 2
700 1 _ |a Boger, Juliane
|b 3
700 1 _ |a Frevert, Anne M.
|b 4
700 1 _ |a Lahey-Rudolph, Janine Mia
|b 5
700 1 _ |a Meyer, Hannah
|b 6
700 1 _ |a Weymar, Lisa
|b 7
700 1 _ |a Redecke, Lars
|0 P:(DE-H253)PIP1008743
|b 8
|e Corresponding author
773 _ _ |a 10.1002/2211-5463.70020
|g Vol. 15, no. 4, p. 551 - 562
|0 PERI:(DE-600)2651702-4
|n 4
|p 551 - 562
|t FEBS Open Bio
|v 15
|y 2025
|x 2211-5463
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/639244/files/FEBS%20Open%20Bio%20-%202025%20-%20Sch%C3%B6nherr%20-%20Intracellular%20protein%20crystallization%20in%20living%20insect%20cells.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/639244/files/FEBS%20Open%20Bio%20-%202025%20-%20Sch%C3%B6nherr%20-%20Intracellular%20protein%20crystallization%20in%20living%20insect%20cells.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:639244
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1008743
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1008743
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-633
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Life Sciences – Building Blocks of Life: Structure and Function
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-09
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FEBS OPEN BIO : 2022
|d 2024-12-09
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-09
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:05:31Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:05:31Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-09
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-09
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-08T17:05:31Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-09
920 1 _ |0 I:(DE-H253)FS-PS-20131107
|k FS-PS
|l FS-Photon Science
|x 0
920 1 _ |0 I:(DE-H253)U_L__beck-20211012
|k U Lübeck
|l Universität zu Lübeck
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-PS-20131107
980 _ _ |a I:(DE-H253)U_L__beck-20211012
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21