001     639242
005     20251125210859.0
024 7 _ |a 10.1103/PhysRevD.111.043022
|2 doi
024 7 _ |a Xue:2024qtx
|2 INSPIRETeX
024 7 _ |a inspire:2835670
|2 inspire
024 7 _ |a 2470-0010
|2 ISSN
024 7 _ |a 2470-0037
|2 ISSN
024 7 _ |a 2470-0029
|2 ISSN
024 7 _ |a arXiv:2409.19516
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2025-04362
|2 datacite_doi
037 _ _ |a PUBDB-2025-04362
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a arXiv:2409.19516
|2 arXiv
088 _ _ |a DESY-24-137
|2 DESY
100 1 _ |a Xue, Xiaorui
|0 P:(DE-H253)PIP1114068
|b 0
|e Corresponding author
245 _ _ |a Non-Gaussian statistics of nanohertz stochastic gravitational waves
260 _ _ |a Ridge, NY
|c 2025
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1764075257_3547413
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 14 pages including references, 8 figures. Accepted by Phys. Rev. D
520 _ _ |a Multiple pulsar timing arrays (PTAs) have recently reported evidence for nHz stochastic gravitational wave background (SGWB), stimulating intensive discussions about its physical origin. In principle, the sources may be either supermassive black hole binaries (SMBHBs) or processes in the early Universe. One key difference between the two lies in the statistics of the SGWB frequency power spectrum. In particular, the often assumed Gaussian random SGWB does not accurately describe the distribution of the collective SMBHB emission. This work presents a semianalytical framework for calculating the non-Gaussian statistics of SGWB power expected from SMBHBs. We find that (a) wave interference between individual SMBHBs with indistinguishable observed frequencies and (b) the Poisson fluctuation of the source numbers, together shape the non-Gaussian statistics. Implementing the non-Gaussian statistics developed in this work, we investigate the sensitivity of current and future PTA datasets in distinguishing the origin of the SGWB through non-Gaussian information. Additionally, we find an interesting approximation of the non-Gaussian statistics, which has implications for accurately and practically treating non-Gaussianity in PTA Bayesian analyses.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)390833306 - EXC 2121: Quantum Universe (390833306)
|0 G:(GEPRIS)390833306
|c 390833306
|x 1
588 _ _ |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
650 _ 7 |a gravitational radiation, stochastic
|2 INSPIRE
650 _ 7 |a black hole, binary
|2 INSPIRE
650 _ 7 |a gravitational radiation, background
|2 INSPIRE
650 _ 7 |a statistics
|2 INSPIRE
650 _ 7 |a non-Gaussianity
|2 INSPIRE
650 _ 7 |a power spectrum
|2 INSPIRE
650 _ 7 |a fluctuation
|2 INSPIRE
650 _ 7 |a sensitivity
|2 INSPIRE
650 _ 7 |a interference
|2 INSPIRE
650 _ 7 |a Poisson
|2 INSPIRE
650 _ 7 |a Bayesian
|2 INSPIRE
650 _ 7 |a pulsar
|2 INSPIRE
650 _ 7 |a collective
|2 INSPIRE
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Pan, Zhen
|0 0000-0001-9608-009X
|b 1
700 1 _ |a Dai, Liang
|0 0000-0003-2091-8946
|b 2
773 _ _ |a 10.1103/PhysRevD.111.043022
|g Vol. 111, no. 4, p. 043022
|0 PERI:(DE-600)2844732-3
|n 4
|p 043022
|t Physical review / D
|v 111
|y 2025
|x 2470-0010
787 0 _ |a Xue, Xiao et.al.
|d 2024
|i IsParent
|0 PUBDB-2024-05893
|r DESY-24-137 ; arXiv:2409.19516
|t Non-Gaussian Statistics of Nanohertz Stochastic Gravitational Waves
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/639242/files/PhysRevD.111.043022.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/639242/files/PhysRevD.111.043022.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:639242
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1114068
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1114068
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2024-12-10
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV D : 2022
|d 2024-12-10
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHYS REV D : 2022
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-10
915 _ _ |a No Peer Review
|0 StatID:(DE-HGF)0020
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
920 1 _ |0 I:(DE-H253)UNI_TH-20120731
|k UNI/TH
|l Uni Hamburg / Theorie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)UNI_TH-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21