001     639234
005     20251217132558.0
024 7 _ |2 INSPIRETeX
|a Christmann:2025zmk
024 7 _ |2 inspire
|a inspire:2904106
024 7 _ |2 arXiv
|a arXiv:2503.19657
024 7 _ |a altmetric:175478630
|2 altmetric
037 _ _ |a PUBDB-2025-04354
041 _ _ |a English
082 _ _ |a 530
088 _ _ |2 arXiv
|a arXiv:2503.19657
100 1 _ |0 P:(DE-H253)PIP1117468
|a Christmann, Jan-Magnus
|b 0
|e Corresponding author
245 _ _ |a Homogenized harmonic balance finite element method for nonlinear eddy current simulations of fast corrector magnets
260 _ _ |c 2025
336 7 _ |0 PUB:(DE-HGF)25
|2 PUB:(DE-HGF)
|a Preprint
|b preprint
|m preprint
|s 1760445010_2870243
336 7 _ |2 ORCID
|a WORKING_PAPER
336 7 _ |0 28
|2 EndNote
|a Electronic Article
336 7 _ |2 DRIVER
|a preprint
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 DataCite
|a Output Types/Working Paper
500 _ _ |a 18 pages, 27 figures, to be published in Physical Review Accelerators and Beams
520 _ _ |a This paper develops a homogenized harmonic balance finite element method (HomHBFEM) to predict the dynamic behavior of magnets with fast excitation cycles, including eddy current and skin effects. A homogenization technique for laminated yokes avoids resolving the individual laminates and the skin depth in the finite element (FE) mesh. Instead, the yoke is represented by a bulk surrogate material with frequency-dependent parameters. The ferromagnetic saturation of the yoke at higher excitation currents is tackled by a harmonic balance method, which accounts for a coupled set of frequency components. Thereby, a computationally expensive time stepping of the eddy-current field problem and a convolution of the homogenized yoke model are avoided. The HomHBFEM enables, for the first time, nonlinear simulations of fast corrector magnets, which are embedded in a fast orbit feedback system to counteract orbit disturbances over a broad frequency spectrum, and thus guarantee stable light-source operation. The results show the impact of the nonlinearity on the phase lag and the field attenuation, as well as the eddy current losses at frequencies up to several tens of kilohertz. The numerical validation for a C-dipole magnet example shows that the HomHBFEM achieves a sufficient accuracy at an affordable computational effort, with simulation times of a few hours. In comparison, standard 3D transient FE simulations need to resolve the lamination thickness and the skin depth in space and the largest relevant frequency in time, which leads to a 2 to 3 orders of magnitude larger mesh and prohibitive computational effort, with simulation times of a few weeks on a contemporary computer server.
536 _ _ |0 G:(DE-HGF)POF4-621
|a 621 - Accelerator Research and Development (POF4-621)
|c POF4-621
|f POF IV
|x 0
536 _ _ |0 G:(GEPRIS)264883531
|a GRK 2128 - GRK 2128: AccelencE: Beschleunigerphysik und –technologie für Teilchenbeschleuniger mit Energierückgewinnung (264883531)
|c 264883531
|x 1
588 _ _ |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-H253)PETRAIV-20220101
|1 EXP:(DE-H253)PETRAIV-20220101
|a PETRA IV
|x 0
700 1 _ |0 0000-0003-1009-1324
|a D'Angelo, Laura Anna Maria
|b 1
700 1 _ |0 0000-0003-2709-2518
|a De Gersem, Herbert
|b 2
700 1 _ |0 P:(DE-H253)PIP1012349
|a Pfeiffer, Sven
|b 3
700 1 _ |0 P:(DE-H253)PIP1098676
|a Mirza, Sajjad Hussain
|b 4
|u desy
700 1 _ |0 P:(DE-H253)PIP1082200
|a Thede, Matthias
|b 5
|u desy
700 1 _ |0 P:(DE-H253)PIP1095906
|a Aloev, Alexander
|b 6
|u desy
700 1 _ |0 P:(DE-H253)PIP1000212
|a Schlarb, Holger
|b 7
|u desy
856 4 _ |u https://bib-pubdb1.desy.de/record/639234/files/2503.19657v1.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/639234/files/2503.19657v1.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:639234
|p VDB
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-H253)PIP1117468
|a External Institute
|b 0
|k Extern
910 1 _ |0 I:(DE-588b)2008985-5
|6 P:(DE-H253)PIP1012349
|a Deutsches Elektronen-Synchrotron
|b 3
|k DESY
910 1 _ |0 I:(DE-588b)2008985-5
|6 P:(DE-H253)PIP1098676
|a Deutsches Elektronen-Synchrotron
|b 4
|k DESY
910 1 _ |0 I:(DE-588b)2008985-5
|6 P:(DE-H253)PIP1082200
|a Deutsches Elektronen-Synchrotron
|b 5
|k DESY
910 1 _ |0 I:(DE-588b)2008985-5
|6 P:(DE-H253)PIP1095906
|a Deutsches Elektronen-Synchrotron
|b 6
|k DESY
910 1 _ |0 I:(DE-588b)2008985-5
|6 P:(DE-H253)PIP1000212
|a Deutsches Elektronen-Synchrotron
|b 7
|k DESY
913 1 _ |0 G:(DE-HGF)POF4-621
|1 G:(DE-HGF)POF4-620
|2 G:(DE-HGF)POF4-600
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|v Accelerator Research and Development
|x 0
914 1 _ |y 2025
915 _ _ |a Published
|0 StatID:(DE-HGF)0580
|2 StatID
920 1 _ |0 I:(DE-H253)MSK-20120731
|k MSK
|l Strahlkontrollen
|x 0
920 1 _ |0 I:(DE-H253)MEA1-20210408
|k MEA1
|l Technische Projektierung
|x 1
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)MSK-20120731
980 _ _ |a I:(DE-H253)MEA1-20210408
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21