000639234 001__ 639234
000639234 005__ 20251217132558.0
000639234 0247_ $$2INSPIRETeX$$aChristmann:2025zmk
000639234 0247_ $$2inspire$$ainspire:2904106
000639234 0247_ $$2arXiv$$aarXiv:2503.19657
000639234 0247_ $$2altmetric$$aaltmetric:175478630
000639234 037__ $$aPUBDB-2025-04354
000639234 041__ $$aEnglish
000639234 088__ $$2arXiv$$aarXiv:2503.19657
000639234 082__ $$a530
000639234 1001_ $$0P:(DE-H253)PIP1117468$$aChristmann, Jan-Magnus$$b0$$eCorresponding author
000639234 245__ $$aHomogenized harmonic balance finite element method for nonlinear eddy current simulations of fast corrector magnets
000639234 260__ $$c2025
000639234 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1760445010_2870243
000639234 3367_ $$2ORCID$$aWORKING_PAPER
000639234 3367_ $$028$$2EndNote$$aElectronic Article
000639234 3367_ $$2DRIVER$$apreprint
000639234 3367_ $$2BibTeX$$aARTICLE
000639234 3367_ $$2DataCite$$aOutput Types/Working Paper
000639234 500__ $$a18 pages, 27 figures, to be published in Physical Review Accelerators and Beams
000639234 520__ $$aThis paper develops a homogenized harmonic balance finite element method (HomHBFEM) to predict the dynamic behavior of magnets with fast excitation cycles, including eddy current and skin effects. A homogenization technique for laminated yokes avoids resolving the individual laminates and the skin depth in the finite element (FE) mesh. Instead, the yoke is represented by a bulk surrogate material with frequency-dependent parameters. The ferromagnetic saturation of the yoke at higher excitation currents is tackled by a harmonic balance method, which accounts for a coupled set of frequency components. Thereby, a computationally expensive time stepping of the eddy-current field problem and a convolution of the homogenized yoke model are avoided. The HomHBFEM enables, for the first time, nonlinear simulations of fast corrector magnets, which are embedded in a fast orbit feedback system to counteract orbit disturbances over a broad frequency spectrum, and thus guarantee stable light-source operation. The results show the impact of the nonlinearity on the phase lag and the field attenuation, as well as the eddy current losses at frequencies up to several tens of kilohertz. The numerical validation for a C-dipole magnet example shows that the HomHBFEM achieves a sufficient accuracy at an affordable computational effort, with simulation times of a few hours. In comparison, standard 3D transient FE simulations need to resolve the lamination thickness and the skin depth in space and the largest relevant frequency in time, which leads to a 2 to 3 orders of magnitude larger mesh and prohibitive computational effort, with simulation times of a few weeks on a contemporary computer server.
000639234 536__ $$0G:(DE-HGF)POF4-621$$a621 - Accelerator Research and Development (POF4-621)$$cPOF4-621$$fPOF IV$$x0
000639234 536__ $$0G:(GEPRIS)264883531$$aGRK 2128 - GRK 2128: AccelencE: Beschleunigerphysik und –technologie für Teilchenbeschleuniger mit Energierückgewinnung (264883531)$$c264883531$$x1
000639234 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
000639234 693__ $$0EXP:(DE-H253)PETRAIV-20220101$$1EXP:(DE-H253)PETRAIV-20220101$$aPETRA IV$$x0
000639234 7001_ $$00000-0003-1009-1324$$aD'Angelo, Laura Anna Maria$$b1
000639234 7001_ $$00000-0003-2709-2518$$aDe Gersem, Herbert$$b2
000639234 7001_ $$0P:(DE-H253)PIP1012349$$aPfeiffer, Sven$$b3
000639234 7001_ $$0P:(DE-H253)PIP1098676$$aMirza, Sajjad Hussain$$b4$$udesy
000639234 7001_ $$0P:(DE-H253)PIP1082200$$aThede, Matthias$$b5$$udesy
000639234 7001_ $$0P:(DE-H253)PIP1095906$$aAloev, Alexander$$b6$$udesy
000639234 7001_ $$0P:(DE-H253)PIP1000212$$aSchlarb, Holger$$b7$$udesy
000639234 8564_ $$uhttps://bib-pubdb1.desy.de/record/639234/files/2503.19657v1.pdf$$yRestricted
000639234 8564_ $$uhttps://bib-pubdb1.desy.de/record/639234/files/2503.19657v1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000639234 909CO $$ooai:bib-pubdb1.desy.de:639234$$pVDB
000639234 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1117468$$aExternal Institute$$b0$$kExtern
000639234 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1012349$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000639234 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1098676$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000639234 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1082200$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000639234 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1095906$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000639234 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1000212$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000639234 9131_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator Research and Development$$x0
000639234 9141_ $$y2025
000639234 915__ $$0StatID:(DE-HGF)0580$$2StatID$$aPublished
000639234 9201_ $$0I:(DE-H253)MSK-20120731$$kMSK$$lStrahlkontrollen$$x0
000639234 9201_ $$0I:(DE-H253)MEA1-20210408$$kMEA1$$lTechnische Projektierung$$x1
000639234 980__ $$apreprint
000639234 980__ $$aVDB
000639234 980__ $$aI:(DE-H253)MSK-20120731
000639234 980__ $$aI:(DE-H253)MEA1-20210408
000639234 980__ $$aUNRESTRICTED