| Home > Publications database > Microhydration Dynamics in Molecular Photoswitches: Equilibrium State Reconfiguration in Imine‐Based Architectures > print |
| 001 | 639233 | ||
| 005 | 20251119161910.0 | ||
| 024 | 7 | _ | |a 10.1002/anie.202506531 |2 doi |
| 024 | 7 | _ | |a 1433-7851 |2 ISSN |
| 024 | 7 | _ | |a 0570-0833 |2 ISSN |
| 024 | 7 | _ | |a 1521-3773 |2 ISSN |
| 024 | 7 | _ | |a 10.3204/PUBDB-2025-04353 |2 datacite_doi |
| 024 | 7 | _ | |a openalex:W4412096440 |2 openalex |
| 037 | _ | _ | |a PUBDB-2025-04353 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Campos, Nuno M. |b 0 |
| 245 | _ | _ | |a Microhydration Dynamics in Molecular Photoswitches: Equilibrium State Reconfiguration in Imine‐Based Architectures |
| 260 | _ | _ | |a Weinheim |c 2025 |b Wiley-VCH |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1762334253_2307327 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The functional performance of a molecular photoswitch relies strongly on its ability to undergo structural changes in solution. In this context, microsolvation studies in the gas phase provide access to the conformational panorama of these systems in a size-controlled hydrated environment. Here, we exploit this gas-phase vantage point alongside quantum-chemistry calculations to study the structural properties and microhydration dynamics of camphorquinone imine, a chiral molecule holding the functionality to engage in a motor-like function upon light activation. Using molecular rotational resonance spectroscopy with supersonic jets, we detect and analyze the first- and second-order water complexes of the chiral imine. Our findings reveal that initial hydration steps significantly impact the equilibrium between open (E) and closed (Z) forms, culminating in a reversal of relative stability for the switch states. Despite being captured at rotational temperatures near 1 K, we find that water molecules exhibit notable mobility due to the lack of prominent stabilizing secondary interactions. Additionally, the assignment of a key higher-energy closed (Z) water complex provides insights into the energy required for switching between (E) and (Z) states during collisional cooling. We discuss these effects and rationalize them in terms of molecular forces and internal dynamics governing early solvation. |
| 536 | _ | _ | |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631) |0 G:(DE-HGF)POF4-631 |c POF4-631 |f POF IV |x 0 |
| 536 | _ | _ | |a DFG project G:(GEPRIS)328961117 - SFB 1319: Extremes Licht zur Analyse und Kontrolle molekularer Chiralität (ELCH) (328961117) |0 G:(GEPRIS)328961117 |c 328961117 |x 1 |
| 536 | _ | _ | |a DFG project G:(GEPRIS)390677874 - EXC 2033: RESOLV (Ruhr Explores Solvation) (390677874) |0 G:(GEPRIS)390677874 |c 390677874 |x 2 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
| 693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
| 700 | 1 | _ | |a Roque, Rita J. C. |0 P:(DE-H253)PIP1108601 |b 1 |
| 700 | 1 | _ | |a Pinacho Morante, Pablo |0 P:(DE-H253)PIP1027381 |b 2 |
| 700 | 1 | _ | |a Pollok, Corina H. |b 3 |
| 700 | 1 | _ | |a Merten, Christian |b 4 |
| 700 | 1 | _ | |a Silva, Pedro S. P. |b 5 |
| 700 | 1 | _ | |a Silva, Manuela R. |b 6 |
| 700 | 1 | _ | |a Schnell, Melanie |0 P:(DE-H253)PIP1013514 |b 7 |e Corresponding author |
| 700 | 1 | _ | |a Domingos, Sergio |0 P:(DE-H253)PIP1103873 |b 8 |e Corresponding author |
| 773 | _ | _ | |a 10.1002/anie.202506531 |g Vol. 64, no. 31, p. e202506531 |0 PERI:(DE-600)2011836-3 |n 31 |p e202506531 |t Angewandte Chemie / International edition |v 64 |y 2025 |x 1433-7851 |
| 856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/639233/files/Angew%20Chem%20Int%20Ed%20-%202025%20-%20Campos%20-%20Microhydration%20Dynamics%20in%20Molecular%20Photoswitches%20%20Equilibrium%20State%20Reconfiguration.pdf |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/639233/files/Angew%20Chem%20Int%20Ed%20-%202025%20-%20Campos%20-%20Microhydration%20Dynamics%20in%20Molecular%20Photoswitches%20%20Equilibrium%20State%20Reconfiguration.pdf?subformat=pdfa |
| 909 | C | O | |o oai:bib-pubdb1.desy.de:639233 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1108601 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1027381 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1027381 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 7 |6 P:(DE-H253)PIP1013514 |
| 910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 7 |6 P:(DE-H253)PIP1013514 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 P:(DE-H253)PIP1103873 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-631 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Matter – Dynamics, Mechanisms and Control |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-16 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-16 |
| 915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b ANGEW CHEM INT EDIT : 2022 |d 2024-12-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-16 |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2024-12-16 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2024-12-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1210 |2 StatID |b Index Chemicus |d 2024-12-16 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-16 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1200 |2 StatID |b Chemical Reactions |d 2024-12-16 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ANGEW CHEM INT EDIT : 2022 |d 2024-12-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-16 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-16 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-16 |
| 920 | 1 | _ | |0 I:(DE-H253)FS-SMP-20171124 |k FS-SMP |l Spectroscopy of molecular processes |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-H253)FS-SMP-20171124 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|