000639233 001__ 639233
000639233 005__ 20251119161910.0
000639233 0247_ $$2doi$$a10.1002/anie.202506531
000639233 0247_ $$2ISSN$$a1433-7851
000639233 0247_ $$2ISSN$$a0570-0833
000639233 0247_ $$2ISSN$$a1521-3773
000639233 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-04353
000639233 0247_ $$2openalex$$aopenalex:W4412096440
000639233 037__ $$aPUBDB-2025-04353
000639233 041__ $$aEnglish
000639233 082__ $$a540
000639233 1001_ $$aCampos, Nuno M.$$b0
000639233 245__ $$aMicrohydration Dynamics in Molecular Photoswitches: Equilibrium State Reconfiguration in Imine‐Based Architectures
000639233 260__ $$aWeinheim$$bWiley-VCH$$c2025
000639233 3367_ $$2DRIVER$$aarticle
000639233 3367_ $$2DataCite$$aOutput Types/Journal article
000639233 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1762334253_2307327
000639233 3367_ $$2BibTeX$$aARTICLE
000639233 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000639233 3367_ $$00$$2EndNote$$aJournal Article
000639233 520__ $$aThe functional performance of a molecular photoswitch relies strongly on its ability to undergo structural changes in solution. In this context, microsolvation studies in the gas phase provide access to the conformational panorama of these systems in a size-controlled hydrated environment. Here, we exploit this gas-phase vantage point alongside quantum-chemistry calculations to study the structural properties and microhydration dynamics of camphorquinone imine, a chiral molecule holding the functionality to engage in a motor-like function upon light activation. Using molecular rotational resonance spectroscopy with supersonic jets, we detect and analyze the first- and second-order water complexes of the chiral imine. Our findings reveal that initial hydration steps significantly impact the equilibrium between open (E) and closed (Z) forms, culminating in a reversal of relative stability for the switch states. Despite being captured at rotational temperatures near 1 K, we find that water molecules exhibit notable mobility due to the lack of prominent stabilizing secondary interactions. Additionally, the assignment of a key higher-energy closed (Z) water complex provides insights into the energy required for switching between (E) and (Z) states during collisional cooling. We discuss these effects and rationalize them in terms of molecular forces and internal dynamics governing early solvation.
000639233 536__ $$0G:(DE-HGF)POF4-631$$a631 - Matter – Dynamics, Mechanisms and Control (POF4-631)$$cPOF4-631$$fPOF IV$$x0
000639233 536__ $$0G:(GEPRIS)328961117$$aDFG project G:(GEPRIS)328961117 - SFB 1319: Extremes Licht zur Analyse und Kontrolle molekularer Chiralität (ELCH) (328961117)$$c328961117$$x1
000639233 536__ $$0G:(GEPRIS)390677874$$aDFG project G:(GEPRIS)390677874 - EXC 2033: RESOLV (Ruhr Explores Solvation) (390677874)$$c390677874$$x2
000639233 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000639233 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000639233 7001_ $$0P:(DE-H253)PIP1108601$$aRoque, Rita J. C.$$b1
000639233 7001_ $$0P:(DE-H253)PIP1027381$$aPinacho Morante, Pablo$$b2
000639233 7001_ $$aPollok, Corina H.$$b3
000639233 7001_ $$aMerten, Christian$$b4
000639233 7001_ $$aSilva, Pedro S. P.$$b5
000639233 7001_ $$aSilva, Manuela R.$$b6
000639233 7001_ $$0P:(DE-H253)PIP1013514$$aSchnell, Melanie$$b7$$eCorresponding author
000639233 7001_ $$0P:(DE-H253)PIP1103873$$aDomingos, Sergio$$b8$$eCorresponding author
000639233 773__ $$0PERI:(DE-600)2011836-3$$a10.1002/anie.202506531$$gVol. 64, no. 31, p. e202506531$$n31$$pe202506531$$tAngewandte Chemie / International edition$$v64$$x1433-7851$$y2025
000639233 8564_ $$uhttps://bib-pubdb1.desy.de/record/639233/files/Angew%20Chem%20Int%20Ed%20-%202025%20-%20Campos%20-%20Microhydration%20Dynamics%20in%20Molecular%20Photoswitches%20%20Equilibrium%20State%20Reconfiguration.pdf$$yOpenAccess
000639233 8564_ $$uhttps://bib-pubdb1.desy.de/record/639233/files/Angew%20Chem%20Int%20Ed%20-%202025%20-%20Campos%20-%20Microhydration%20Dynamics%20in%20Molecular%20Photoswitches%20%20Equilibrium%20State%20Reconfiguration.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000639233 909CO $$ooai:bib-pubdb1.desy.de:639233$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000639233 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1108601$$aExternal Institute$$b1$$kExtern
000639233 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1027381$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000639233 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1027381$$aExternal Institute$$b2$$kExtern
000639233 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1013514$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000639233 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1013514$$aCentre for Free-Electron Laser Science$$b7$$kCFEL
000639233 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1103873$$aExternal Institute$$b8$$kExtern
000639233 9131_ $$0G:(DE-HGF)POF4-631$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMatter – Dynamics, Mechanisms and Control$$x0
000639233 9141_ $$y2025
000639233 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
000639233 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-16
000639233 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000639233 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
000639233 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bANGEW CHEM INT EDIT : 2022$$d2024-12-16
000639233 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-16
000639233 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-16$$wger
000639233 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-16
000639233 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2024-12-16
000639233 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-16
000639233 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
000639233 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000639233 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
000639233 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2024-12-16
000639233 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANGEW CHEM INT EDIT : 2022$$d2024-12-16
000639233 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
000639233 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-16$$wger
000639233 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
000639233 9201_ $$0I:(DE-H253)FS-SMP-20171124$$kFS-SMP$$lSpectroscopy of molecular processes$$x0
000639233 980__ $$ajournal
000639233 980__ $$aVDB
000639233 980__ $$aUNRESTRICTED
000639233 980__ $$aI:(DE-H253)FS-SMP-20171124
000639233 9801_ $$aFullTexts