000639214 001__ 639214
000639214 005__ 20251014215458.0
000639214 0247_ $$2doi$$a10.1016/j.sbi.2025.103165
000639214 0247_ $$2ISSN$$a0959-440X
000639214 0247_ $$2ISSN$$a1879-033X
000639214 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-04336
000639214 037__ $$aPUBDB-2025-04336
000639214 041__ $$aEnglish
000639214 082__ $$a570
000639214 1001_ $$0P:(DE-H253)PIP1097784$$aGenz, Luca$$b0
000639214 245__ $$aDrug targeting of protein-nucleic acid interactions
000639214 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2025
000639214 3367_ $$2DRIVER$$aarticle
000639214 3367_ $$2DataCite$$aOutput Types/Journal article
000639214 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1760447374_2867353
000639214 3367_ $$2BibTeX$$aARTICLE
000639214 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000639214 3367_ $$00$$2EndNote$$aJournal Article
000639214 500__ $$aand DFG CRC1648
000639214 520__ $$aProtein–nucleic acid interactions are vital to gene regulation and disease, yet have long been considered “undruggable.” Recent advances are reshaping this paradigm, enabling therapeutic targeting of DNA- and RNA-binding proteins. In this review, we highlight four major strategies: (1) direct disruption of protein-nucleic acid binding, (2) stabilization of specific complexes or conformations, (3) targeted degradation of interaction partners, and (4) allosteric modulation. We explore key examples across transcription factors, RNA-binding proteins, and DNA repair proteins, and emphasize emerging chemical, structural, and computational techniques that are accelerating discovery. Together, by intervening directly in the gene regulatory machinery, these approaches expand the druggable genome and open new avenues for treating cancer, genetic disorders, and viral infections. 
000639214 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000639214 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000639214 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000639214 7001_ $$0P:(DE-H253)PIP1101921$$aNair, Sanjana$$b1
000639214 7001_ $$0P:(DE-H253)PIP1100083$$aSweeney, Aaron$$b2
000639214 7001_ $$0P:(DE-H253)PIP1094132$$aTopf, Maya$$b3$$eCorresponding author
000639214 773__ $$0PERI:(DE-600)2019233-2$$a10.1016/j.sbi.2025.103165$$gVol. 95, p. 103165 -$$p103165 $$tCurrent opinion in structural biology$$v95$$x0959-440X$$y2025
000639214 8564_ $$uhttps://bib-pubdb1.desy.de/record/639214/files/1-s2.0-S0959440X25001836-main.pdf$$yOpenAccess
000639214 8564_ $$uhttps://bib-pubdb1.desy.de/record/639214/files/1-s2.0-S0959440X25001836-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000639214 909CO $$ooai:bib-pubdb1.desy.de:639214$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000639214 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1097784$$aCentre for Structural Systems Biology$$b0$$kCSSB
000639214 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1097784$$aExternal Institute$$b0$$kExtern
000639214 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1101921$$aCentre for Structural Systems Biology$$b1$$kCSSB
000639214 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1100083$$aCentre for Structural Systems Biology$$b2$$kCSSB
000639214 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1094132$$aCentre for Structural Systems Biology$$b3$$kCSSB
000639214 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1094132$$aExternal Institute$$b3$$kExtern
000639214 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000639214 9141_ $$y2025
000639214 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
000639214 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-09
000639214 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-09
000639214 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000639214 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-09
000639214 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCURR OPIN STRUC BIOL : 2022$$d2024-12-09
000639214 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-09
000639214 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-09
000639214 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
000639214 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000639214 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-09
000639214 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCURR OPIN STRUC BIOL : 2022$$d2024-12-09
000639214 915__ $$0StatID:(DE-HGF)1120$$2StatID$$aDBCoverage$$bBIOSIS Reviews Reports And Meetings$$d2024-12-09
000639214 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
000639214 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-09$$wger
000639214 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
000639214 9201_ $$0I:(DE-H253)CSSB-LIV_UKE-MT-20220525$$kCSSB-LIV/UKE-MT$$lCSSB - Leibniz-Institut für Experimentelle Virologie (LIV) / UKE - Maya Topf$$x0
000639214 980__ $$ajournal
000639214 980__ $$aVDB
000639214 980__ $$aUNRESTRICTED
000639214 980__ $$aI:(DE-H253)CSSB-LIV_UKE-MT-20220525
000639214 9801_ $$aFullTexts