001     639100
005     20251119161902.0
024 7 _ |a 10.1021/acsnano.5c09137
|2 doi
024 7 _ |a 1936-0851
|2 ISSN
024 7 _ |a 1936-086X
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-04303
|2 datacite_doi
024 7 _ |a openalex:W4413141516
|2 openalex
037 _ _ |a PUBDB-2025-04303
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Reichholf, Nico
|0 0000-0003-4064-3011
|b 0
245 _ _ |a Identification and Elimination of Surface Emission in Lanthanide (Co)doped Zirconia Nanocrystals
260 _ _ |a Washington, DC
|c 2025
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1760613166_2110631
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Zirconia nanocrystals (ZrO2 NCs) are a stable host material for lanthanides, but their performance lags behind that of the leading NaYF4 nanomaterials. Here, we leverage surface chemistry and core/shell architectures to uncover the contribution of dopants at the nanocrystal surface and of dopants in the nanocrystal bulk. We first assess the doping efficiency by ICP and find that, while Eu is almost quantitatively incorporated, the other lanthanides (La, Ce, Tb, Tm, Er, Yb) have about 50% incorporation efficiency over the studied doping range of 1–10%. We then determine the nanocrystal surface chemistry using NMR spectroscopy, despite the additional spectral line broadening caused by the paramagnetic lanthanide dopants. By varying the surface ligands and measuring the photoluminescence, we resolve the spectroscopic signals that are sensitive to a change in surface chemistry. Time-resolved emission spectra further reinforce the notion of a bulk component with a long luminescent lifetime and a surface component with a fast lifetime. Upon shelling Eu- or Tb-doped zirconia NCs with pure zirconia, the surface component disappears, and the photoluminescence quantum yield increases. We further functionalized the surface of the core/shell particles with oleylphosphonic acid ligands to obtain excellent dispersibility. These results show that lanthanide-doped zirconia NCs can be engineered to eliminate deactivation pathways.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a FS-Proposal: I-20231114 EC (I-20231114-EC)
|0 G:(DE-H253)I-20231114-EC
|c I-20231114-EC
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P21.1
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P21.1-20150101
|6 EXP:(DE-H253)P-P21.1-20150101
|x 0
700 1 _ |a Horta, Sharona
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Van der Heggen, David
|0 0000-0002-6938-5573
|b 2
700 1 _ |a Seno, Carlotta
|0 P:(DE-H253)PIP1102117
|b 3
700 1 _ |a Pulparayil Mathew, Jikson
|0 P:(DE-H253)PIP1107953
|b 4
700 1 _ |a Ibáñez, Maria
|0 P:(DE-H253)PIP1111950
|b 5
700 1 _ |a Smet, Philippe F.
|0 0000-0003-4789-5799
|b 6
700 1 _ |a De Roo, Jonathan
|0 P:(DE-H253)PIP1092584
|b 7
|e Corresponding author
773 _ _ |a 10.1021/acsnano.5c09137
|g Vol. 19, no. 33, p. 30371 - 30382
|0 PERI:(DE-600)2383064-5
|n 33
|p 30371 - 30382
|t ACS nano
|v 19
|y 2025
|x 1936-0851
856 4 _ |u https://bib-pubdb1.desy.de/record/639100/files/identification-and-elimination-of-surface-emission-in-lanthanide-%28co%29doped-zirconia-nanocrystals.pdf
856 4 _ |y Published on 2025-08-14. Available in OpenAccess from 2026-08-14.
|u https://bib-pubdb1.desy.de/record/639100/files/Manuscript.pdf
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/639100/files/identification-and-elimination-of-surface-emission-in-lanthanide-%28co%29doped-zirconia-nanocrystals.pdf?subformat=pdfa
856 4 _ |y Published on 2025-08-14. Available in OpenAccess from 2026-08-14.
|x pdfa
|u https://bib-pubdb1.desy.de/record/639100/files/Manuscript.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:639100
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1102117
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1107953
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1111950
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1092584
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ACS NANO : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS NANO : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 1 _ |0 I:(DE-H253)FS_DOOR-User-20241023
|k FS DOOR-User
|l FS DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS_DOOR-User-20241023
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21