001     638760
005     20251119161843.0
024 7 _ |a 10.1128/mbio.00368-25
|2 doi
024 7 _ |a 2161-2129
|2 ISSN
024 7 _ |a 2150-7511
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-04191
|2 datacite_doi
024 7 _ |a altmetric:179361527
|2 altmetric
024 7 _ |a pmid:40657901
|2 pmid
024 7 _ |a openalex:W4412394674
|2 openalex
037 _ _ |a PUBDB-2025-04191
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Ejby Hansen, Morten
|b 0
245 _ _ |a Uptake of fucosylated type I human milk oligosaccharide blocks by Bifidobacterium longum subsp. infantis
260 _ _ |a Washington, DC
|c 2025
|b American Society for Microbiology
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1760614031_2110639
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Human milk oligosaccharides (HMOs) are uniquely rich in the type 1 building block disaccharide lacto-N-biose I (LNB; Galβ1,3GlcNAc), as compared to other mammals. Most HMOs are fucosylated, for example, α1,2 and α1,4 fucosylations on LNB blocks, resulting in H type 1 (H1) and Lewis a (Lea) epitopes, respectively. The dominance of Bifidobacterium in breastfed infant guts hinges on the efficient uptake of HMOs by specific ATP-binding cassette (ABC) importers. However, molecular insight into uptake of fucosylated LNB blocks is lacking. Here, we analyzed the uptake of LNB and its fucosylated H1 and Lea trisaccharides, as well as the mucin-derived disaccharide galacto-N-biose (GNB; Galβ1,3GalNAc) by an ABC importer from the HMO-utilization specialist Bifidobacterium longum subsp. infantis. Structural analyses and molecular dynamics simulations explained how fucosylated and non-fucosylated LNB forms are recognized with similar affinities by the binding protein of this importer. Strikingly, we showed that two ABC importers confer to the uptake of LNB, while the Lea trisaccharide is efficiently internalized by a single importer in B. infantis. Phylogenetic and structural analyses of bifidobacterial ABC-associated binding proteins showed that the Lea clade harbors homologs possessing internal cavities, which allows for the accommodation of branched oligosaccharides. Our work provides unique insight into the evolution and molecular basis of capture and uptake of key HMO and host-derived saccharide blocks, highlighting these compounds as hitherto unexplored candidates for fortification of infant formula.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P14
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P14-20150101
|6 EXP:(DE-H253)P-P14-20150101
|x 0
700 1 _ |a Sakanaka, Mikiyasu
|0 0000-0002-4223-0926
|b 1
700 1 _ |a Jensen, Mathias
|0 0000-0002-8760-6616
|b 2
700 1 _ |a Sakanaka, Hiroka
|b 3
700 1 _ |a Pichler, Michael Jakob
|b 4
700 1 _ |a Maeda, Shingo
|b 5
700 1 _ |a Franck Høvring, Julie
|0 0000-0003-4762-5529
|b 6
700 1 _ |a Nakajima, Aruto
|b 7
700 1 _ |a Kunstmann, Sonja
|b 8
700 1 _ |a Nielsen, Tine Sofie
|b 9
700 1 _ |a Peters, Günther Herbert Johannes
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Slotboom, Dirk Jan
|b 11
700 1 _ |a Morth, Jens Preben
|b 12
700 1 _ |a Katayama, Takane
|0 0000-0003-4009-7874
|b 13
700 1 _ |a Abou Hachem, Maher
|0 0000-0001-8250-1842
|b 14
|e Corresponding author
773 _ _ |a 10.1128/mbio.00368-25
|g Vol. 16, no. 8, p. e00368-25
|0 PERI:(DE-600)2557172-2
|n 8
|p e00368-25
|t mBio
|v 16
|y 2025
|x 2161-2129
856 4 _ |u https://journals.asm.org/doi/10.1128/mbio.00368-25
856 4 _ |u https://bib-pubdb1.desy.de/record/638760/files/Uptake%20of%20.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/638760/files/Uptake%20of%20.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:638760
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-18
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MBIO : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-03-14T07:11:37Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-03-14T07:11:37Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-03-14T07:11:37Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-18
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MBIO : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
920 1 _ |0 I:(DE-H253)EMBL-User-20120814
|k EMBL-User
|l EMBL-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)EMBL-User-20120814
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21