001     638748
005     20251119161839.0
024 7 _ |a 10.1038/s44318-024-00311-1
|2 doi
024 7 _ |a 0261-4189
|2 ISSN
024 7 _ |a 1460-2075
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-04179
|2 datacite_doi
024 7 _ |a altmetric:170859887
|2 altmetric
024 7 _ |a pmid:39558108
|2 pmid
024 7 _ |a openalex:W4404473446
|2 openalex
037 _ _ |a PUBDB-2025-04179
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Schulz, Luca
|0 0000-0002-4796-2587
|b 0
245 _ _ |a Layered entrenchment maintains essentiality in the evolution of Form I Rubisco complexes
260 _ _ |a [London]
|c 2025
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1760523689_209820
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Protein complexes composed of strictly essential subunits are abundant in nature and often arise through the gradual complexification of ancestral precursor proteins. Essentiality can arise through the accumulation of changes that are tolerated in the complex state but would be deleterious for the standalone complex components. While this theoretical framework to explain how essentiality arises has been proposed long ago, it is unclear which factors cause essentiality to persist over evolutionary timescales. In this work we show that the central enzyme of photosynthesis, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), can easily start to depend on a newly recruited interaction partner through multiple, genetically distinct mechanisms that affect stability, solubility, and catalysis. We demonstrate that layering multiple mechanisms of essentiality can lead to its persistence, even if any given mechanism reverts. More broadly, our work highlights that new interaction partners can drastically re-shape which substitutions are tolerated in the proteins they are recruited into. This can lead to the evolution of multilayered essentiality through the exploration of areas of sequence space that are only accessible in the complex state.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P14
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P14-20150101
|6 EXP:(DE-H253)P-P14-20150101
|x 0
700 1 _ |a Zarzycki, Jan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Steinchen, Wieland
|b 2
700 1 _ |a Hochberg, Georg
|0 P:(DE-H253)PIP1104107
|b 3
|e Corresponding author
700 1 _ |a Erb, Tobias
|0 P:(DE-H253)PIP1082781
|b 4
|e Corresponding author
773 _ _ |a 10.1038/s44318-024-00311-1
|g Vol. 44, no. 1, p. 269 - 280
|0 PERI:(DE-600)1467419-1
|n 1
|p 269 - 280
|t The EMBO journal
|v 44
|y 2025
|x 0261-4189
856 4 _ |u https://www.embopress.org/doi/epdf/10.1038/s44318-024-00311-1
856 4 _ |u https://bib-pubdb1.desy.de/record/638748/files/Layered%20entrenchment%20maintains%20essentiality%20in%20the%20evolution%20of%20Form%20I%20Rubisco%20complexes.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/638748/files/Layered%20entrenchment%20maintains%20essentiality%20in%20the%20evolution%20of%20Form%20I%20Rubisco%20complexes.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:638748
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 3
|6 P:(DE-H253)PIP1104107
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1104107
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1082781
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 4
|6 P:(DE-H253)PIP1082781
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-30
|w ger
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b EMBO J : 2022
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-08T07:44:01Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-08T07:44:01Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-30
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EMBO J : 2022
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-30
920 1 _ |0 I:(DE-H253)EMBL-User-20120814
|k EMBL-User
|l EMBL-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)EMBL-User-20120814
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21