000638645 001__ 638645
000638645 005__ 20251119161837.0
000638645 0247_ $$2doi$$a10.1063/5.0281364
000638645 0247_ $$2ISSN$$a0021-8979
000638645 0247_ $$2ISSN$$a0148-6349
000638645 0247_ $$2ISSN$$a1089-7550
000638645 0247_ $$2ISSN$$a2163-5102
000638645 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-04126
000638645 0247_ $$2openalex$$aopenalex:W4412594268
000638645 037__ $$aPUBDB-2025-04126
000638645 041__ $$aEnglish
000638645 082__ $$a530
000638645 1001_ $$0P:(DE-H253)PIP1096019$$aAzavedo, Myren$$b0
000638645 245__ $$aDisorder driven magnetostructural coupling in MnCoGe$_{1−x}$Sn$_x$
000638645 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2025
000638645 3367_ $$2DRIVER$$aarticle
000638645 3367_ $$2DataCite$$aOutput Types/Journal article
000638645 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1760444507_2868168
000638645 3367_ $$2BibTeX$$aARTICLE
000638645 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000638645 3367_ $$00$$2EndNote$$aJournal Article
000638645 520__ $$aMnCoGe-based intermetallics have garnered significant attention owing to their pronounced negative thermal expansion and large magnetocaloric effect (MCE), both of which are highly sensitive to chemical substitutions. Despite extensive studies, the microscopic origin underlying the tunability of these properties remains unclear. In this study, we conducted a comprehensive investigation of the local atomic environments around Mn and Co in MnCoGe Sn (⁠ ⁠) using extended x-ray absorption fine structure and other structural and magnetic characterization techniques. Our analysis reveals that the substitutional disorder introduced by Sn atoms occupying the Ge sublattice sites disrupts the cooperative lattice distortions required for the long-range displacive martensitic transformation. This disorder-induced suppression results in a systematic decrease in both the martensitic transition temperature (⁠ ⁠) and the magnetic ordering temperature (⁠ ⁠). At low doping levels, the convergence of and enhances magnetostructural coupling, thereby amplifying the MCE. However, further Sn substitution ultimately suppresses the martensitic transition entirely, leading to a decoupling of the magnetic and structural degrees of freedom and a consequent degradation of the magnetostructural response.
000638645 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000638645 536__ $$0G:(DE-H253)I-20210145$$aFS-Proposal: I-20210145 (I-20210145)$$cI-20210145$$x1
000638645 536__ $$0G:(DE-HGF)2020_Join2-INDIA-DESY$$aINDIA-DESY - INDIA-DESY Collaboration (2020_Join2-INDIA-DESY)$$c2020_Join2-INDIA-DESY$$x2
000638645 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000638645 693__ $$0EXP:(DE-H253)P-P65-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P65-20150101$$aPETRA III$$fPETRA Beamline P65$$x0
000638645 7001_ $$0P:(DE-H253)PIP1030863$$aDias, Elaine Teodolinda$$b1
000638645 7001_ $$0P:(DE-H253)PIP1029014$$aPriolkar, Kaustubh$$b2$$eCorresponding author
000638645 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/5.0281364$$gVol. 138, no. 4, p. 043903$$n4$$p043903$$tJournal of applied physics$$v138$$x0021-8979$$y2025
000638645 8564_ $$uhttps://bib-pubdb1.desy.de/record/638645/files/043903_1_5.0281364.pdf$$yOpenAccess
000638645 8564_ $$uhttps://bib-pubdb1.desy.de/record/638645/files/043903_1_5.0281364.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000638645 909CO $$ooai:bib-pubdb1.desy.de:638645$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000638645 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1096019$$aExternal Institute$$b0$$kExtern
000638645 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1030863$$aExternal Institute$$b1$$kExtern
000638645 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1029014$$aExternal Institute$$b2$$kExtern
000638645 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000638645 9141_ $$y2025
000638645 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
000638645 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
000638645 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2024-12-18
000638645 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
000638645 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL PHYS : 2022$$d2024-12-18
000638645 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000638645 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
000638645 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
000638645 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
000638645 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000638645 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
000638645 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
000638645 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-18$$wger
000638645 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
000638645 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
000638645 9201_ $$0I:(DE-H253)FS_DOOR-User-20241023$$kFS DOOR-User$$lFS DOOR-User$$x0
000638645 980__ $$ajournal
000638645 980__ $$aVDB
000638645 980__ $$aUNRESTRICTED
000638645 980__ $$aI:(DE-H253)FS_DOOR-User-20241023
000638645 9801_ $$aFullTexts