000638438 001__ 638438
000638438 005__ 20250923145138.0
000638438 0247_ $$2doi$$a10.1016/j.jma.2025.02.024
000638438 037__ $$aPUBDB-2025-04066
000638438 082__ $$a540
000638438 1001_ $$0P:(DE-H253)PIP1100437$$aGubicza, Jeno$$b0$$eCorresponding author
000638438 245__ $$aIn situ diffraction study on the annealing performance of a rapidly solidified ribbon consolidated Mg-Ca-Y-Zn-Mn alloy
000638438 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2025
000638438 3367_ $$2DRIVER$$aarticle
000638438 3367_ $$2DataCite$$aOutput Types/Journal article
000638438 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1758631732_4079329
000638438 3367_ $$2BibTeX$$aARTICLE
000638438 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000638438 3367_ $$00$$2EndNote$$aJournal Article
000638438 500__ $$aOpen access
000638438 520__ $$aDilute Mg alloys processed by the rapidly solidified ribbon consolidation (RSRC) technique are candidate materials for structural applications due to their enhanced mechanical performance. The thermal stability of the structure in these alloys strongly influences their mechanical performance at elevated temperatures. In this study, an RSRC-processed Mg–1% Ca–0.5% Zn–0.1% Y–0.03% Mn (at%) alloy was heated at a constant rate up to 833 K, and concurrently in situ X-ray diffraction (XRD) measurements were performed using synchrotron radiation in order to monitor the changes in the structure. In addition, ex situ electron microscopy investigations were carried out before and after annealing to complete the XRD study. On the basis of XRD results, the stages of the microstructure evolution during heating were identified. In addition, the thermal expansion coefficients of the matrix and the Mg2Ca secondary phase were determined. Between 299 and 400 K, the lattice constants of both the matrix and the Mg2Ca phase increased due to thermal expansion. In the temperature range of 400-673 K, the increase of the lattice constants with increasing the temperature continued, but their rate was different for the two phases which can induce thermal stresses. Between 673 and 753 K, the lattice constants of the secondary phase did not change most probably due to the compensating effects of the thermal expansion and the decrease of the Ca content. In the temperature range of 753–793 K, the Mg2Ca phase started to dissolve. Between 793 and 833 K the dissolution continued, and additionally the matrix was partially melted.
000638438 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000638438 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000638438 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000638438 693__ $$0EXP:(DE-H253)P-P21.2-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P21.2-20150101$$aPETRA III$$fPETRA Beamline P21.2$$x0
000638438 7001_ $$0P:(DE-H253)PIP1020306$$aMathis, Kristian$$b1
000638438 7001_ $$0P:(DE-H253)PIP1088927$$aNagy, Peter$$b2
000638438 7001_ $$0P:(DE-HGF)0$$aJenei, Péter$$b3
000638438 7001_ $$0P:(DE-H253)PIP1083297$$aHegedues, Zoltan$$b4$$udesy
000638438 7001_ $$0P:(DE-HGF)0$$aFarkas, Andrea$$b5
000638438 7001_ $$0P:(DE-HGF)0$$aVeselý, Jozef$$b6
000638438 7001_ $$0P:(DE-HGF)0$$aInoue, Shin-ichi$$b7
000638438 7001_ $$0P:(DE-H253)PIP1098263$$aDrozdenko, Daria$$b8
000638438 7001_ $$0P:(DE-HGF)0$$aKawamura, Yoshihito$$b9
000638438 773__ $$0PERI:(DE-600)2732700-0$$a10.1016/j.jma.2025.02.024$$gVol. 13, no. 4, p. 1771 - 1783$$n4$$p1771 - 1783$$tJournal of magnesium and alloys$$v13$$x2213-9567$$y2025
000638438 8564_ $$uhttps://www.sciencedirect.com/science/article/pii/S2213956725000805?via%3Dihub
000638438 8564_ $$uhttps://bib-pubdb1.desy.de/record/638438/files/1-s2.0-S2213956725000805-main.pdf$$yRestricted
000638438 8564_ $$uhttps://bib-pubdb1.desy.de/record/638438/files/1-s2.0-S2213956725000805-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000638438 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1100437$$aExternal Institute$$b0$$kExtern
000638438 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1020306$$aExternal Institute$$b1$$kExtern
000638438 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1088927$$aExternal Institute$$b2$$kExtern
000638438 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1083297$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000638438 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1098263$$aExternal Institute$$b8$$kExtern
000638438 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000638438 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000638438 9141_ $$y2025
000638438 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MAGNES ALLOY : 2022$$d2024-12-28
000638438 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
000638438 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-04T14:30:46Z
000638438 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-04T14:30:46Z
000638438 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-04T14:30:46Z
000638438 915__ $$0LIC:(DE-HGF)CCBYNCNDNV$$2V:(DE-HGF)$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)$$bDOAJ$$d2024-04-04T14:30:46Z
000638438 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
000638438 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-28
000638438 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-28
000638438 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-28
000638438 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28
000638438 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bJ MAGNES ALLOY : 2022$$d2024-12-28
000638438 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-28
000638438 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-28
000638438 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000638438 9201_ $$0I:(DE-H253)FS-PETRA-D-20210408$$kFS-PETRA-D$$lPETRA-D$$x1
000638438 980__ $$ajournal
000638438 980__ $$aEDITORS
000638438 980__ $$aVDBINPRINT
000638438 980__ $$aI:(DE-H253)HAS-User-20120731
000638438 980__ $$aI:(DE-H253)FS-PETRA-D-20210408
000638438 980__ $$aUNRESTRICTED