000638431 001__ 638431
000638431 005__ 20250923145115.0
000638431 0247_ $$2doi$$a10.1016/j.jnucmat.2025.155721
000638431 0247_ $$2ISSN$$a0022-3115
000638431 0247_ $$2ISSN$$a1873-4820
000638431 037__ $$aPUBDB-2025-04059
000638431 082__ $$a620
000638431 1001_ $$0P:(DE-H253)PIP1090656$$aKOC, Oemer$$b0$$eCorresponding author
000638431 245__ $$aThe effect of proton irradiation dose rate on the evolution of microstructure in Zr alloys: A synchrotron microbeam X-ray, TEM, and APT study
000638431 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2025
000638431 3367_ $$2DRIVER$$aarticle
000638431 3367_ $$2DataCite$$aOutput Types/Journal article
000638431 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1758631810_4080839
000638431 3367_ $$2BibTeX$$aARTICLE
000638431 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000638431 3367_ $$00$$2EndNote$$aJournal Article
000638431 500__ $$aOpen access
000638431 520__ $$aProtons are increasingly used as a surrogate for neutrons to study radiation damage of engineering alloys used in the core of a nuclear reactor, enabling high fluences in comparatively short times. However, the accelerated damage rate of protons is usually compensated by an increased irradiation temperature to assist diffusion. To better understand dose rate effects on microstructure evolution during radiation damage, recrystallized Low-Sn ZIRLO and Zircaloy-2 were proton-irradiated to 0.15 dpa at 320 °C using nominal dose rates of 1.3, 2.5, and 5.2 × 10−5 dpa/s. Depth profiling using microbeam synchrotron XRD was conducted across the 30 µm deep irradiated regions for line profile analysis, enabling dislocation line density determination. We found no significant difference in dislocation density among the different dose rates for Zircaloy-2 while Low-Sn ZIRLO displayed dose rate sensitive microstructural evolution. However, Low-Sn ZIRLO exhibited a significantly lower overall dislocation density compared to Zircaloy-2 samples at all dose rates. (S)TEM analysis of the samples showed clear 〈a〉 loop alignment in Zircaloy-2, while this was less pronounced in Low-Sn ZIRLO. APT analysis conducted on Low-Sn ZIRLO specimens showed the early onset of irradiation induced nanoclusters of Nb, where the clusters were observed to be comparatively smaller in the sample exposed to high dose rate irradiation. Overall, the integration of different techniques has provided a more comprehensive understanding of the early-stage damage evolution under differing damage accumulation rates.
000638431 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000638431 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000638431 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000638431 693__ $$0EXP:(DE-H253)P-P21.2-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P21.2-20150101$$aPETRA III$$fPETRA Beamline P21.2$$x0
000638431 7001_ $$0P:(DE-H253)PIP1087450$$aThomas, Rhys$$b1
000638431 7001_ $$0P:(DE-HGF)0$$aJenkins, B.$$b2
000638431 7001_ $$0P:(DE-HGF)0$$aHofer, C.$$b3
000638431 7001_ $$0P:(DE-H253)PIP1083297$$aHegedues, Zoltan$$b4
000638431 7001_ $$0P:(DE-H253)PIP1016210$$aLienert, Ulrich$$b5
000638431 7001_ $$0P:(DE-HGF)0$$aHarrison, R. W.$$b6
000638431 7001_ $$0P:(DE-H253)PIP1010862$$aPreuss, Michael$$b7
000638431 7001_ $$0P:(DE-H253)PIP1014444$$aUngar, Tamas$$b8
000638431 7001_ $$0P:(DE-H253)PIP1009689$$aFrankel, Philipp$$b9
000638431 773__ $$0PERI:(DE-600)2001279-2$$a10.1016/j.jnucmat.2025.155721$$gVol. 608, p. 155721 -$$p155721 -$$tJournal of nuclear materials$$v608$$x0022-3115$$y2025
000638431 8564_ $$uhttps://www.sciencedirect.com/science/article/pii/S0022311525001163?via%3Dihub
000638431 8564_ $$uhttps://bib-pubdb1.desy.de/record/638431/files/1-s2.0-S0022311525001163-main.pdf$$yRestricted
000638431 8564_ $$uhttps://bib-pubdb1.desy.de/record/638431/files/1-s2.0-S0022311525001163-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000638431 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1090656$$aExternal Institute$$b0$$kExtern
000638431 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1087450$$aExternal Institute$$b1$$kExtern
000638431 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1083297$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000638431 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1016210$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000638431 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1010862$$aExternal Institute$$b7$$kExtern
000638431 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1014444$$aExternal Institute$$b8$$kExtern
000638431 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1009689$$aExternal Institute$$b9$$kExtern
000638431 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000638431 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000638431 9141_ $$y2025
000638431 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-01$$wger
000638431 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
000638431 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
000638431 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-01
000638431 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-01
000638431 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-01
000638431 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-01
000638431 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
000638431 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NUCL MATER : 2022$$d2025-01-01
000638431 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
000638431 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-01
000638431 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-01
000638431 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-01
000638431 9201_ $$0I:(DE-H253)FS-PETRA-D-20210408$$kFS-PETRA-D$$lPETRA-D$$x0
000638431 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x1
000638431 980__ $$ajournal
000638431 980__ $$aEDITORS
000638431 980__ $$aVDBINPRINT
000638431 980__ $$aI:(DE-H253)FS-PETRA-D-20210408
000638431 980__ $$aI:(DE-H253)HAS-User-20120731
000638431 980__ $$aUNRESTRICTED