Home > Documents in process > Structural insights into the substrate binding mechanism of the class I dehydratase MadB > print |
001 | 638191 | ||
005 | 20250918131433.0 | ||
024 | 7 | _ | |a 10.1038/s42003-025-08454-5 |2 doi |
037 | _ | _ | |a PUBDB-2025-04009 |
041 | _ | _ | |a English |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Knospe, C. Vivien |b 0 |
245 | _ | _ | |a Structural insights into the substrate binding mechanism of the class I dehydratase MadB |
260 | _ | _ | |a London |c 2025 |b Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1758193604_3298915 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In the battle against antimicrobial resistance, lantibiotics have emerged as promising new sources for antimicrobial drugs. Their exceptional stability is due to characteristic modifications termed (methyl-)lanthionine rings. Genome mining efforts have identified hundreds of lantibiotics by detecting gene operons, so-called biosynthetic gene clusters (BGC), which encode cysteine-rich peptides (30-50 amino acids in size) and enzymes responsible for dehydration and cyclization, catalyzing the post-translational ring formation. One such identified, class I lantibiotic is maddinglicin from Clostridium maddingley. Here, we present single particle cryo-EM structures of the dehydratase MadB in both, its apo-state and in complex with a leader peptide of maddinglicin, revealing a distinct conformational change upon substrate binding. Small-angle X-ray scattering studies elucidate the substrate binding site for the C-terminal part of maddinglicin. Furthermore, a substrate specificity analysis was performed highlighting a critical stretch of amino acids within the maddinglicin leader sequence that is crucial for binding. Here, we provide molecular insights into the conformational changes, principles of substrate recognition and ligand:protein stoichiometry of a class I lantibiotic dehydratase. |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P12 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P12-20150101 |6 EXP:(DE-H253)P-P12-20150101 |x 0 |
700 | 1 | _ | |a Ortiz, Julio |b 1 |
700 | 1 | _ | |a Reiners, Jens |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Kedrov, Alexej |0 0000-0001-9117-752X |b 3 |
700 | 1 | _ | |a Gertzen, Christoph G. W. |0 0000-0002-9562-7708 |b 4 |
700 | 1 | _ | |a Smits, Sander H. J. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Schmitt, Lutz |0 0000-0002-1167-9819 |b 6 |e Corresponding author |
773 | _ | _ | |a 10.1038/s42003-025-08454-5 |g Vol. 8, no. 1, p. 1032 |0 PERI:(DE-600)2919698-X |n 1 |p 1032 |t Communications biology |v 8 |y 2025 |x 2399-3642 |
856 | 4 | _ | |u https://www.nature.com/articles/s42003-025-08454-5 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/638191/files/Structural%20insights%20into%20the%20substrate%20binding%20mechanism%20of%20the%20class%20I%20dehydratase%20MadB.pdf |y Restricted |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/638191/files/Structural%20insights%20into%20the%20substrate%20binding%20mechanism%20of%20the%20class%20I%20dehydratase%20MadB.pdf?subformat=pdfa |x pdfa |y Restricted |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 0 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b COMMUN BIOL : 2022 |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-04-10T15:36:12Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-04-10T15:36:12Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-04-10T15:36:12Z |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2024-04-10T15:36:12Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-11 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-11 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-11 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b COMMUN BIOL : 2022 |d 2024-12-11 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-11 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-11 |
920 | 1 | _ | |0 I:(DE-H253)EMBL-User-20120814 |k EMBL-User |l EMBL-User |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a EDITORS |
980 | _ | _ | |a VDBINPRINT |
980 | _ | _ | |a I:(DE-H253)EMBL-User-20120814 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|