001     638020
005     20251119161803.0
024 7 _ |a 10.1016/j.bbamem.2025.184452
|2 doi
024 7 _ |a 0005-2728
|2 ISSN
024 7 _ |a 0006-3002
|2 ISSN
024 7 _ |a 0005-2736
|2 ISSN
024 7 _ |a 1879-2642
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-03968
|2 datacite_doi
024 7 _ |a altmetric:181384603
|2 altmetric
024 7 _ |a pmid:40930447
|2 pmid
024 7 _ |a openalex:W4414057625
|2 openalex
037 _ _ |a PUBDB-2025-03968
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Hoernke, Maria
|0 P:(DE-H253)PIP1008183
|b 0
245 _ _ |a Daptomycin membrane activity is modulated by the localized interplay between calcium ions and phospholipids in monolayers and bilayers containing a lysyl-phosphatidylglycerol analogue
260 _ _ |a Amsterdam
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1759309005_3745499
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Using the stable synthetic analogue 3-aza-dehydroxylysyl-phosphatidylglycerol (3adLPG), the putative role of native staphylococcal LPG in inhibiting the antibiotic daptomycin from binding to its target phosphatidylglycerol (PG), was investigated with respect to interfacial interactions between these lipids, daptomycin, and calcium ions. The influence of lipid monolayer/bilayer composition and interfacial ion concentrations upon the structure and integrity of model membranes were probed after daptomycin challenge using a combination of surface x-ray scattering techniques and fluorescence assays. In models representing the membrane composition of the daptomycin susceptible phenotype consisting of PG/3adLPG in a 7:3 M ratio, calcium ions drive the formation of two separate phases; Ca$^{2+}$ cross-linked PG/PG pairs and PG/3adLPG ion pairs. Daptomycin is able to bind directly to the lipids in the PG/PG phase and increases the amount of interfacial Ca$^{2+}$ ions to a level sufficient to displace 3adLPG from ion pairs with PG, and thus binds to its target PG. In bilayers with mixed chain lipids, daptomycin leads to pronounced membrane perturbations and enhanced permeability. Sequestering all of the available PG into PG/3adLPG ion pairs, therefore, would represent a putative daptomycin non-susceptible membrane. Daptomycin binding and the extent of subsequent lipid structural changes are reduced in these membranes. This implies that in bacteria, native LPG biosynthesis would need to ensure either an equivalence or an excess in relation to membrane PG content, in order for this mechanism alone to significantly contribute to daptomycin resistance.
536 _ _ |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)
|0 G:(DE-HGF)POF4-633
|c POF4-633
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a DFG project G:(GEPRIS)415894560 - Polymer-induzierte endosomale Freisetzung für drug delivery: die mechanistische Verknüpfung von pH-induzierter Polymerbindung, Leakage, Fusion und anderem physikalisch-chemischen Membranverhalten (415894560)
|0 G:(GEPRIS)415894560
|c 415894560
|x 2
536 _ _ |a FS-Proposal: I-20190426 (I-20190426)
|0 G:(DE-H253)I-20190426
|c I-20190426
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P08
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P08-20150101
|6 EXP:(DE-H253)P-P08-20150101
|x 0
700 1 _ |a Shi, Shuai
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hubbard, Alasdair T. M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Geringer, Nina
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Strati, Fabio
|0 P:(DE-H253)PIP1087741
|b 4
700 1 _ |a Shen, Chen
|0 P:(DE-H253)PIP1014115
|b 5
700 1 _ |a Wölk, Christian
|0 P:(DE-H253)PIP1020591
|b 6
|e Corresponding author
700 1 _ |a Harvey, Richard D.
|0 P:(DE-H253)PIP1081540
|b 7
|e Corresponding author
773 _ _ |a 10.1016/j.bbamem.2025.184452
|g p. 184452 -
|0 PERI:(DE-600)2209384-9
|n 8
|p 184452
|t Biochimica et biophysica acta / Biomembranes
|v 1867
|y 2025
|x 0005-2728
856 4 _ |u https://www.sciencedirect.com/science/article/pii/S000527362500046X
856 4 _ |u https://bib-pubdb1.desy.de/record/638020/files/1-s2.0-S000527362500046X-main.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/638020/files/1-s2.0-S000527362500046X-main.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:638020
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1008183
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 4
|6 P:(DE-H253)PIP1087741
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1087741
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1014115
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1014115
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1020591
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1081540
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-633
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Life Sciences – Building Blocks of Life: Structure and Function
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-07
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BBA-BIOMEMBRANES : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-07
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PET-D-20190712
|k FS-PET-D
|l Experimentebetreuung PETRA III
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PET-D-20190712
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21