000638020 001__ 638020 000638020 005__ 20250918154108.0 000638020 0247_ $$2doi$$a10.1016/j.bbamem.2025.184452 000638020 0247_ $$2ISSN$$a0005-2728 000638020 0247_ $$2ISSN$$a0006-3002 000638020 0247_ $$2ISSN$$a0005-2736 000638020 0247_ $$2ISSN$$a1879-2642 000638020 037__ $$aPUBDB-2025-03968 000638020 041__ $$aEnglish 000638020 082__ $$a570 000638020 1001_ $$0P:(DE-H253)PIP1008183$$aHoernke, Maria$$b0$$eFirst author 000638020 245__ $$aDaptomycin membrane activity is modulated by the localized interplay between calcium ions and phospholipids in monolayers and bilayers containing a lysyl-phosphatidylglycerol analogue 000638020 260__ $$aAmsterdam$$bElsevier$$c2025 000638020 3367_ $$2DRIVER$$aarticle 000638020 3367_ $$2DataCite$$aOutput Types/Journal article 000638020 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1758202812_3298915 000638020 3367_ $$2BibTeX$$aARTICLE 000638020 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000638020 3367_ $$00$$2EndNote$$aJournal Article 000638020 520__ $$aUsing the stable synthetic analogue 3-aza-dehydroxylysyl-phosphatidylglycerol (3adLPG), the putative role of native staphylococcal LPG in inhibiting the antibiotic daptomycin from binding to its target phosphatidylglycerol (PG), was investigated with respect to interfacial interactions between these lipids, daptomycin, and calcium ions. The influence of lipid monolayer/bilayer composition and interfacial ion concentrations upon the structure and integrity of model membranes were probed after daptomycin challenge using a combination of surface x-ray scattering techniques and fluorescence assays. In models representing the membrane composition of the daptomycin susceptible phenotype consisting of PG/3adLPG in a 7:3 M ratio, calcium ions drive the formation of two separate phases; Ca2+ cross-linked PG/PG pairs and PG/3adLPG ion pairs. Daptomycin is able to bind directly to the lipids in the PG/PG phase and increases the amount of interfacial Ca2+ ions to a level sufficient to displace 3adLPG from ion pairs with PG, and thus binds to its target PG. In bilayers with mixed chain lipids, daptomycin leads to pronounced membrane perturbations and enhanced permeability. Sequestering all of the available PG into PG/3adLPG ion pairs, therefore, would represent a putative daptomycin non-susceptible membrane. Daptomycin binding and the extent of subsequent lipid structural changes are reduced in these membranes. This implies that in bacteria, native LPG biosynthesis would need to ensure either an equivalence or an excess in relation to membrane PG content, in order for this mechanism alone to significantly contribute to daptomycin resistance. 000638020 536__ $$0G:(DE-HGF)POF4-633$$a633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)$$cPOF4-633$$fPOF IV$$x0 000638020 536__ $$0G:(DE-H253)I-20190426$$aFS-Proposal: I-20190426 (I-20190426)$$cI-20190426$$x1 000638020 536__ $$0G:(GEPRIS)415894560$$aDFG project G:(GEPRIS)415894560 - Polymer-induzierte endosomale Freisetzung für drug delivery: die mechanistische Verknüpfung von pH-induzierter Polymerbindung, Leakage, Fusion und anderem physikalisch-chemischen Membranverhalten (415894560)$$c415894560$$x2 000638020 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x3 000638020 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de 000638020 693__ $$0EXP:(DE-H253)P-P08-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P08-20150101$$aPETRA III$$fPETRA Beamline P08$$x0 000638020 7001_ $$0P:(DE-HGF)0$$aShi, Shuai$$b1 000638020 7001_ $$0P:(DE-HGF)0$$aHubbard, Alasdair T. M.$$b2 000638020 7001_ $$0P:(DE-HGF)0$$aGeringer, Nina$$b3 000638020 7001_ $$0P:(DE-H253)PIP1087741$$aStrati, Fabio$$b4 000638020 7001_ $$0P:(DE-H253)PIP1014115$$aShen, Chen$$b5$$udesy 000638020 7001_ $$0P:(DE-H253)PIP1020591$$aWölk, Christian$$b6$$eCorresponding author 000638020 7001_ $$0P:(DE-H253)PIP1081540$$aHarvey, Richard D.$$b7$$eCorresponding author 000638020 773__ $$0PERI:(DE-600)2209384-9$$a10.1016/j.bbamem.2025.184452$$gp. 184452 -$$n8$$p184452$$tBiochimica et biophysica acta / Biomembranes$$v1867$$x0005-2728$$y2025 000638020 8564_ $$uhttps://www.sciencedirect.com/science/article/pii/S000527362500046X 000638020 8564_ $$uhttps://bib-pubdb1.desy.de/record/638020/files/1-s2.0-S000527362500046X-main.pdf$$yRestricted 000638020 8564_ $$uhttps://bib-pubdb1.desy.de/record/638020/files/1-s2.0-S000527362500046X-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000638020 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008183$$aExternal Institute$$b0$$kExtern 000638020 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1087741$$aCentre for Structural Systems Biology$$b4$$kCSSB 000638020 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1087741$$aExternal Institute$$b4$$kExtern 000638020 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1014115$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY 000638020 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1014115$$aExternal Institute$$b5$$kExtern 000638020 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1020591$$aExternal Institute$$b6$$kExtern 000638020 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1081540$$aExternal Institute$$b7$$kExtern 000638020 9131_ $$0G:(DE-HGF)POF4-633$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vLife Sciences – Building Blocks of Life: Structure and Function$$x0 000638020 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1 000638020 9141_ $$y2025 000638020 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-07$$wger 000638020 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07 000638020 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07 000638020 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07 000638020 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-07 000638020 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07 000638020 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-07 000638020 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-07 000638020 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07 000638020 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07 000638020 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBBA-BIOMEMBRANES : 2022$$d2025-01-07 000638020 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-07 000638020 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-07 000638020 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-07 000638020 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-07 000638020 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0 000638020 9201_ $$0I:(DE-H253)FS-PET-D-20190712$$kFS-PET-D$$lExperimentebetreuung PETRA III$$x1 000638020 980__ $$ajournal 000638020 980__ $$aEDITORS 000638020 980__ $$aVDBINPRINT 000638020 980__ $$aI:(DE-H253)HAS-User-20120731 000638020 980__ $$aI:(DE-H253)FS-PET-D-20190712 000638020 980__ $$aUNRESTRICTED