001     638016
005     20250923145306.0
024 7 _ |a 10.1016/j.apcatb.2025.125870
|2 doi
024 7 _ |a 0926-3373
|2 ISSN
024 7 _ |a 1873-3883
|2 ISSN
037 _ _ |a PUBDB-2025-03964
082 _ _ |a 540
100 1 _ |a Choong, Choe Earn
|0 0000-0002-3921-778X
|b 0
245 _ _ |a Micro-environment regulation for strong metal–support interaction in $RuO_2$-doped barium cerate for boosting photocatalytic ammonia production
260 _ _ |a Amsterdam
|c 2026
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1758631907_4079382
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a These measurements were carried out during in house research beamtime: H-20010499
520 _ _ |a Modulating the local microenvironment via strong metal-support interaction (SMSI) approach in Ru-based photocatalyst for improving photocatalytic ammonia production is poorly understood. Herein, we investigate the mechanism of the SMSI effect of RuO2 on barium cerate (BC) by forming Ru-O-Ce electron transfer channel to enhance the photocatalytic ammonium (NH4+) production. Among the prepared photocatalysts, BC-Ru0.25 showed the highest NH4+ formation rate of 3.533 mmol g−1 h−1 with a 5.464 % apparent quantum efficiency (AQE), which was 5.17-fold higher than BC. In-situ X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES) analyses revealed that RuO2 doping on BC promoted the formation of Ru-O-Ce bonds and degenerate barium 3d orbitals, creating an asymmetric coordination environment that improved N2 interaction. Additionally, the formation of a Ru-O-Ce electron channel on BC prolonged the electron decay time and improved spatial separation, resulting in higher nitric oxide (NO) radical formation due to the promotion of hydroxyl radical generation from photoexcited holes. Notably, in-situ surface-enhanced Raman spectroscopy (SERS) analysis revealed that RuO2 loading on BC altered the electronic state of Ba owing to the SMSI effect, improved N2 interaction on the Ba-O bonds, and facilitated the NH4+ production. Density functional theory (DFT) calculations showed that RuO2-doping of BC can result in Ba-N bonding and promote the nitric oxide reduction reaction (NORR) by reducing the energy barrier of the rate-determining step and accelerating the protonation process. This study demonstrates the SMSI effects via the strategy of a Ru-based dopant on NH4+ photocatalytic production.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P64
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P64-20150101
|6 EXP:(DE-H253)P-P64-20150101
|x 0
700 1 _ |a Hong, YuKyung
|b 1
700 1 _ |a Nandy, Subhajit
|0 P:(DE-H253)PIP1108447
|b 2
|u desy
700 1 _ |a Wong, Kien Tiek
|b 3
700 1 _ |a Weng, Bo
|0 0000-0001-8337-219X
|b 4
700 1 _ |a Choi, Eunjin
|0 P:(DE-H253)PIP1103754
|b 5
|u desy
700 1 _ |a Yoon, Yeomin
|0 0000-0001-9893-0924
|b 6
|e Corresponding author
700 1 _ |a Jang, Min
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1016/j.apcatb.2025.125870
|g Vol. 382, p. 125870 -
|0 PERI:(DE-600)2017331-3
|p 125870 -
|t Applied catalysis / B
|v 382
|y 2026
|x 0926-3373
856 4 _ |u https://bib-pubdb1.desy.de/record/638016/files/Main%20Manuscript.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/638016/files/Main%20Manuscript.pdf?subformat=pdfa
|x pdfa
|y Restricted
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1108447
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1108447
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL CATAL B-ENVIRON : 2022
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-06
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b APPL CATAL B-ENVIRON : 2022
|d 2025-01-06
920 1 _ |0 I:(DE-H253)FS-PETRA-S-20210408
|k FS-PETRA-S
|l PETRA-S
|x 0
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 1
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-H253)FS-PETRA-S-20210408
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21