001 | 637986 | ||
005 | 20250910103501.0 | ||
024 | 7 | _ | |a 10.1002/smll.202506651 |2 doi |
024 | 7 | _ | |a 1613-6810 |2 ISSN |
024 | 7 | _ | |a 1613-6829 |2 ISSN |
037 | _ | _ | |a PUBDB-2025-03955 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Maksym, Andriy Z. |b 0 |
245 | _ | _ | |a Self‐Assembly of Bent‐Core Nematics in Nanopores |
260 | _ | _ | |a Weinheim |c 2025 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1757492326_681331 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Bent-core nematic liquid crystals exhibit unique properties, including giantflexoelectricity and polar electro-optic responses, making them ideal forenergy conversion and electro-optic applications. When confined innanopores, they can stabilize chiral nanostructures, enhance polar order, andenable defect-driven switching – offering potential in nanofluidics, sensing,and adaptive optics. The thermotropic ordering of the bent-core dimer CB7CBconfined in anodic aluminum oxide (AAO) and silica membranes withprecisely engineered cylindrical nanochannels – ranging from just a fewnanometers to several hundred nanometers–is examined. These well-alignednanochannels enable high-resolution polarimetry studies of opticalanisotropy, revealing how geometric confinement affects molecularorganization and phase behavior. Under weak confinement, CB7CB forms alayered heterophase structure, with nematic, splay-bent, and twist-bentheliconical phases likely arranged concentrically. As confinement increases, aLandau-de Gennes analysis shows that ordered phases are suppressed,leaving only a paranematic phase under strong spatial constraints.Remarkably, temperature-dependent changes in optical birefringence underconfinement closely resemble those seen under applied electric fields,revealing a parallel between geometric and electro-optic effects. Overall, thiswork demonstrates how nanoconfinement allows one to systematically tailorthe self-assembly and optical behavior of bent-core nematics, enabling novelfunctionalities in responsive and anisotropic materials. |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
536 | _ | _ | |a DFG project G:(GEPRIS)430146019 - Ionische Flüssigkristalle in Nanoporösen Festkörpern: Selbstorganisation, molekulare Mobilität und elektro-optische Funktionalitäten (430146019) |0 G:(GEPRIS)430146019 |c 430146019 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Andrushchak, Anatoliy S. |0 0000-0002-8611-3027 |b 1 |
700 | 1 | _ | |a Shchur, Yaroslav |0 0000-0001-9662-6304 |b 2 |
700 | 1 | _ | |a Sahraoui, Bouchta |0 0000-0002-3934-2839 |b 3 |
700 | 1 | _ | |a Kula, Przemysław |0 0000-0002-7862-7968 |b 4 |
700 | 1 | _ | |a Lelonek, Monika |0 0000-0002-2193-5943 |b 5 |
700 | 1 | _ | |a Busch, Mark |0 P:(DE-H253)PIP1020038 |b 6 |
700 | 1 | _ | |a Huber, Patrick |0 P:(DE-H253)PIP1013897 |b 7 |e Corresponding author |
700 | 1 | _ | |a Kityk, Andriy V. |0 0000-0002-4823-3220 |b 8 |
773 | _ | _ | |a 10.1002/smll.202506651 |g p. e06651 |0 PERI:(DE-600)2168935-0 |p e06651 |t Small |v e06651 |y 2025 |x 1613-6810 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/637986/files/Small%20-%202025%20-%20Maksym%20-%20Self%E2%80%90Assembly%20of%20Bent%E2%80%90Core%20Nematics%20in%20Nanopores.pdf |y Restricted |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/637986/files/Small%20-%202025%20-%20Maksym%20-%20Self%E2%80%90Assembly%20of%20Bent%E2%80%90Core%20Nematics%20in%20Nanopores.pdf?subformat=pdfa |x pdfa |y Restricted |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-H253)PIP1020038 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 7 |6 P:(DE-H253)PIP1013897 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 7 |6 P:(DE-H253)PIP1013897 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2024-12-27 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SMALL : 2022 |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-27 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b SMALL : 2022 |d 2024-12-27 |
920 | 1 | _ | |0 I:(DE-H253)CIMMS-20211022 |k CIMMS |l CIMMS-RA Center for integr. Multiscale M |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a EDITORS |
980 | _ | _ | |a VDBINPRINT |
980 | _ | _ | |a I:(DE-H253)CIMMS-20211022 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|