001     637849
005     20250908213829.0
024 7 _ |a 10.1002/admi.202500269
|2 doi
024 7 _ |a 10.3204/PUBDB-2025-03901
|2 datacite_doi
037 _ _ |a PUBDB-2025-03901
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Chen, Qing
|0 P:(DE-H253)PIP1091370
|b 0
|e Corresponding author
245 _ _ |a Reconfigurable Soft Actuators Constructed via Layer-by-layer Assembly
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1757329850_3856824
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Stimuli-responsive actuators are candidates for the development of soft robots due to their shape deformation and environmental adaptation capabilities. Adaptation to environmental stimuli not only enables complex shape reprogramming but also benefits the recovery of mechanical injuries of the soft actuators. Nevertheless, reports on soft actuators that integrate shape-reprogramming and injury-healing functions into a monolithic actuating material through facile fabrication strategies remain scarce. Herein, a stimuli-responsive and healable actuator is developed via layer-by-layer casting of two stimuli-responsive materials with complementary properties. Upon specific stimulation, these two materials reorganize their structural network at the nano- and microscales and heal. The resulting actuator exhibits a robust photo-responsive actuating strength due to the asymmetric volumetric responses of the two layers. Importantly, the whole actuator can be healed with the aid of a sequential heating-humidifying–drying treatment, achieving excellent healing efficiency in both mechanical strength (72%) and actuating strength (95%). Moreover, the initial actuation modes can be restored and diversified through humidifying or heating-assisted welding procedures, respectively. This work demonstrates a facile strategy to construct reprogrammable actuators with healing and welding abilities stimulated by two environmental stimuli and provides a platform for developing adaptable materials to a changing environment.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a FS-Proposal: I-20220029 (I-20220029)
|0 G:(DE-H253)I-20220029
|c I-20220029
|x 2
536 _ _ |a COgITOR - A new COlloidal cybernetIc sysTem tOwaRds 2030 (964388)
|0 G:(EU-Grant)964388
|c 964388
|f H2020-FETOPEN-2018-2019-2020-01
|x 3
693 _ _ |a PETRA III
|f PETRA Beamline P03
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P03-20150101
|6 EXP:(DE-H253)P-P03-20150101
|x 0
700 1 _ |a Jamilpanah, Loghman
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Künniger, Tina
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Furrer, Roman
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Song, Qun
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zhang, Kai
|0 P:(DE-H253)PIP1117356
|b 5
700 1 _ |a Chumakov, Andrei
|0 P:(DE-H253)PIP1088640
|b 6
700 1 _ |a Harder, Constantin
|0 P:(DE-H253)PIP1088126
|b 7
700 1 _ |a Bulut, Yusuf
|0 P:(DE-H253)PIP1098114
|b 8
700 1 _ |a Müller-Buschbaum, Peter
|0 P:(DE-H253)PIP1007825
|b 9
700 1 _ |a Roth, Stephan V.
|0 P:(DE-H253)PIP1003299
|b 10
700 1 _ |a Braun, Artur
|0 P:(DE-H253)PIP1100638
|b 11
|e Corresponding author
773 _ _ |a 10.1002/admi.202500269
|0 PERI:(DE-600)2750376-8
|n 13
|p 2500269
|t Advanced materials interfaces
|v 12
|y 2025
|x 2196-7350
856 4 _ |u https://advanced.onlinelibrary.wiley.com/doi/10.1002/admi.202500269
856 4 _ |u https://bib-pubdb1.desy.de/record/637849/files/Adv%20Materials%20Inter%20-%202025%20-%20Chen%20-%20Reconfigurable%20Soft%20Actuators%20Constructed%20via%20Layer%E2%80%90by%E2%80%90layer%20Assembly.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/637849/files/Adv%20Materials%20Inter%20-%202025%20-%20Chen%20-%20Reconfigurable%20Soft%20Actuators%20Constructed%20via%20Layer%E2%80%90by%E2%80%90layer%20Assembly.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:637849
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1091370
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1091370
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1117356
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1088640
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1088126
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1098114
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1098114
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1007825
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 10
|6 P:(DE-H253)PIP1003299
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 10
|6 P:(DE-H253)PIP1003299
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1100638
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-11
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:03:47Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:03:47Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-11
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-08T17:03:47Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
920 1 _ |0 I:(DE-H253)FS_DOOR-User-20241023
|k FS DOOR-User
|l FS DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PET-D-20190712
|k FS-PET-D
|l Experimentebetreuung PETRA III
|x 1
920 1 _ |0 I:(DE-H253)FS-SMA-20220811
|k FS-SMA
|l Sustainable Materials
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS_DOOR-User-20241023
980 _ _ |a I:(DE-H253)FS-PET-D-20190712
980 _ _ |a I:(DE-H253)FS-SMA-20220811
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21