TY - JOUR
AU - Hu, Huixin
AU - Kuzovnikov, Mikhail A.
AU - Shuttleworth, Hannah A.
AU - Marqueño, Tomas
AU - Yan, Jinwei
AU - Osmond, Israel
AU - Gorelli, Federico A.
AU - Gregoryanz, Eugene
AU - Dalladay-Simpson, Philip
AU - Ackland, Graeme J.
AU - Peña-Alvarez, Miriam
AU - Howie, Ross
TI - Unexpected compound reformation in the dense selenium-hydrogen system
JO - Communications materials
VL - 6
IS - 1
SN - 2662-4443
CY - London
PB - Springer Nature
M1 - PUBDB-2025-03882
SP - 193
PY - 2025
AB - The H<sub>2</sub>Se molecule and the van der Waals compound (H<sub>2</sub>Se)<sub>2</sub>H<sub>2</sub> are both unstable upon room temperature compression, dissociating into their constituent elements above 22 GPa. Through a series of high pressure-high temperature diamond anvil cell experiments, we report the unexpected formation of a novel compound, SeH<sub>2</sub>(H<sub>2</sub>)<sub>2</sub> at pressures above 94 GPa. X-ray diffraction reveals the metallic sublattice to adopt a tetragonal (I4<sub>1</sub>/amd) structure with density functional theory calculations finding a small distortion due to the orientation of H<sub>2</sub> molecules. The structure comprises of a network of zig-zag H-Se chains with quasi-molecular H<sub>2</sub> molecular units hosted in the prismatic Se interstices. Electrical resistance measurements demonstrate that SeH<sub>2</sub>(H<sub>2</sub>)<sub>2</sub> is non-metallic up to pressures of 148 GPa. Investigations into the Te-H system up to pressures of 165 GPa and 2000 K yielded no compound formation. The combined results suggest that the high pressure phase behavior of each chalcogen hydride is unique and more complex than previously thought.
LB - PUB:(DE-HGF)16
DO - DOI:10.1038/s43246-025-00899-9
UR - https://bib-pubdb1.desy.de/record/637656
ER -