001     637532
005     20250907023254.0
024 7 _ |a arXiv:2410.19342
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2025-03860
|2 datacite_doi
037 _ _ |a PUBDB-2025-03860
041 _ _ |a English
088 _ _ |a arXiv:2410.19342
|2 arXiv
100 1 _ |a Kuzmin, Alexei
|0 P:(DE-H253)PIP1009042
|b 0
|e Corresponding author
245 _ _ |a The use of the correlated Debye model for EXAFS-based thermometry in bcc and fcc metals
260 _ _ |c 2025
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1756709403_909884
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Extended X-ray absorption fine structure (EXAFS) spectra are sensitive to thermal disorder and are often used to probe local lattice dynamics. Variations in interatomic distances induced by atomic vibrations are described by the temperature-dependent mean-square relative displacement (MSRD), also known as the Debye-Waller factor. In this study, we evaluated the feasibility of addressing the inverse problem, i.e., determining the sample temperature from the analysis of its EXAFS spectrum using the multiple-scattering formalism, considering contributions up to the 4th-7th coordination shell. The method was tested on several monatomic metals (bcc Cr, Mo, and W; fcc Cu and Ag), where the correlated Debye model of lattice dynamics provides a fairly accurate description of thermal disorder effects up to distant coordination shells. We found that the accuracy of the method strongly depends on the temperature range. The method fails at low temperatures, where quantum effects dominate and MSRD values change only slightly. However, it becomes more accurate at higher temperatures, where the MSRD shows a near-linear dependence on temperature.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a FS-Proposal: I-20220209 EC (I-20220209-EC)
|0 G:(DE-H253)I-20220209-EC
|c I-20220209-EC
|x 1
536 _ _ |a CAMART2 - Centre of Advanced Materials Research and Technology Transfer CAMART² (739508)
|0 G:(EU-Grant)739508
|c 739508
|f H2020-WIDESPREAD-01-2016-2017-TeamingPhase2
|x 2
588 _ _ |a Dataset connected to arXivarXiv
693 _ _ |a PETRA III
|f PETRA Beamline P65
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P65-20150101
|6 EXP:(DE-H253)P-P65-20150101
|x 0
700 1 _ |a Dimitrijevs, Vitalijs
|0 P:(DE-H253)PIP1101500
|b 1
700 1 _ |a Pudza, Inga
|0 P:(DE-H253)PIP1029767
|b 2
700 1 _ |a Kalinko, Aleksandr
|0 P:(DE-HGF)0
|b 3
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/637532/files/2410.19342v1.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/637532/files/2410.19342v1.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:637532
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1009042
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1101500
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1029767
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Published
|0 StatID:(DE-HGF)0580
|2 StatID
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21