000637532 001__ 637532
000637532 005__ 20250907023254.0
000637532 0247_ $$2arXiv$$aarXiv:2410.19342
000637532 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-03860
000637532 037__ $$aPUBDB-2025-03860
000637532 041__ $$aEnglish
000637532 088__ $$2arXiv$$aarXiv:2410.19342
000637532 1001_ $$0P:(DE-H253)PIP1009042$$aKuzmin, Alexei$$b0$$eCorresponding author
000637532 245__ $$aThe use of the correlated Debye model for EXAFS-based thermometry in bcc and fcc metals
000637532 260__ $$c2025
000637532 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1756709403_909884
000637532 3367_ $$2ORCID$$aWORKING_PAPER
000637532 3367_ $$028$$2EndNote$$aElectronic Article
000637532 3367_ $$2DRIVER$$apreprint
000637532 3367_ $$2BibTeX$$aARTICLE
000637532 3367_ $$2DataCite$$aOutput Types/Working Paper
000637532 520__ $$aExtended X-ray absorption fine structure (EXAFS) spectra are sensitive to thermal disorder and are often used to probe local lattice dynamics. Variations in interatomic distances induced by atomic vibrations are described by the temperature-dependent mean-square relative displacement (MSRD), also known as the Debye-Waller factor. In this study, we evaluated the feasibility of addressing the inverse problem, i.e., determining the sample temperature from the analysis of its EXAFS spectrum using the multiple-scattering formalism, considering contributions up to the 4th-7th coordination shell. The method was tested on several monatomic metals (bcc Cr, Mo, and W; fcc Cu and Ag), where the correlated Debye model of lattice dynamics provides a fairly accurate description of thermal disorder effects up to distant coordination shells. We found that the accuracy of the method strongly depends on the temperature range. The method fails at low temperatures, where quantum effects dominate and MSRD values change only slightly. However, it becomes more accurate at higher temperatures, where the MSRD shows a near-linear dependence on temperature.
000637532 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000637532 536__ $$0G:(DE-H253)I-20220209-EC$$aFS-Proposal: I-20220209 EC (I-20220209-EC)$$cI-20220209-EC$$x1
000637532 536__ $$0G:(EU-Grant)739508$$aCAMART2 - Centre of Advanced Materials Research and Technology Transfer CAMART² (739508)$$c739508$$fH2020-WIDESPREAD-01-2016-2017-TeamingPhase2$$x2
000637532 588__ $$aDataset connected to arXivarXiv
000637532 693__ $$0EXP:(DE-H253)P-P65-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P65-20150101$$aPETRA III$$fPETRA Beamline P65$$x0
000637532 7001_ $$0P:(DE-H253)PIP1101500$$aDimitrijevs, Vitalijs$$b1
000637532 7001_ $$0P:(DE-H253)PIP1029767$$aPudza, Inga$$b2
000637532 7001_ $$0P:(DE-HGF)0$$aKalinko, Aleksandr$$b3
000637532 8564_ $$uhttps://bib-pubdb1.desy.de/record/637532/files/2410.19342v1.pdf$$yOpenAccess
000637532 8564_ $$uhttps://bib-pubdb1.desy.de/record/637532/files/2410.19342v1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000637532 909CO $$ooai:bib-pubdb1.desy.de:637532$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000637532 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1009042$$aExternal Institute$$b0$$kExtern
000637532 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1101500$$aExternal Institute$$b1$$kExtern
000637532 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1029767$$aExternal Institute$$b2$$kExtern
000637532 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000637532 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000637532 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000637532 915__ $$0StatID:(DE-HGF)0580$$2StatID$$aPublished
000637532 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000637532 980__ $$apreprint
000637532 980__ $$aVDB
000637532 980__ $$aUNRESTRICTED
000637532 980__ $$aI:(DE-H253)HAS-User-20120731
000637532 9801_ $$aFullTexts