000637350 001__ 637350
000637350 005__ 20250903212810.0
000637350 0247_ $$2doi$$a10.1016/j.actamat.2025.121423
000637350 0247_ $$2ISSN$$a1359-6454
000637350 0247_ $$2ISSN$$a1873-2453
000637350 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-03842
000637350 037__ $$aPUBDB-2025-03842
000637350 041__ $$aEnglish
000637350 082__ $$a670
000637350 1001_ $$0P:(DE-H253)PIP1100699$$aTurnali, Ahmet$$b0$$eCorresponding author
000637350 245__ $$aHarnessing additive manufacturing-induced microstructure and solute heterogeneities for the design of precipitation-strengthened alloys
000637350 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2025
000637350 3367_ $$2DRIVER$$aarticle
000637350 3367_ $$2DataCite$$aOutput Types/Journal article
000637350 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756897167_1637426
000637350 3367_ $$2BibTeX$$aARTICLE
000637350 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000637350 3367_ $$00$$2EndNote$$aJournal Article
000637350 520__ $$aSolute enrichment at lattice defects is a well-established phenomenon for promoting phase transformations. Metal additive manufacturing (AM) inherently enables this by promoting cellular structures during solidification and thermal cycling. Cellular structures exhibit compositional and lattice defect density variations between cell cores and boundaries, leading to site-specific phase-transformation (e.g., precipitation) behavior that can be selectively activated by post-AM heat treatments. Despite this potential, cellular structures have largely been treated as byproducts rather than intentionally exploited alloy design features. Guided by these insights, we designed a model Al10.5Co25Fe39.5Ni25 multi-principal element alloy to intentionally control composition and thus, precipitation driving forces across cellular structures. The alloy composition was computationally selected to promote segregation of a fast-diffusing, precipitate-forming element into the interdendritic regions during solidification in the laser powder bed fusion (PBF-LB/M) process. This segregation aligned with dislocation walls at cell boundaries, creating a “pre-conditioned” state with enhanced chemical driving force and reduced nucleation barrier for precipitation. This targeted design enabled site-specific nucleation and growth of precipitates at cell boundaries during aging. Comprehensive multiscale characterization complemented by in situ synchrotron X-ray diffraction confirmed that cellular structures accelerated precipitation, increased precipitate volume fraction and refined the precipitate size compared to the reference state where cellular structures were removed via solution annealing before aging. As a result, the alloy achieved enhanced yield strength (122.2 % increase), and improved tensile properties compared to the reference state. These findings demonstrate the potential of harnessing cellular structures as functional components to control microstructure evolution in precipitation strengthened AM alloys.
000637350 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000637350 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000637350 536__ $$0G:(DE-H253)I-20220679-EC$$aFS-Proposal: I-20220679 EC (I-20220679-EC)$$cI-20220679-EC$$x2
000637350 536__ $$0G:(DE-82)BMBF-03XP0264$$aBMBF 03XP0264 - MatAM - Design additiv gefertigter Hochleistungsmaterialien für die Automobilindustrie (BMBF-03XP0264)$$cBMBF-03XP0264$$x3
000637350 536__ $$0G:(EU-Grant)101077977$$aHeteroGenius4D - Heterogeneities-guided alloy design by and for 4D printing (101077977)$$c101077977$$fERC-2022-STG$$x4
000637350 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000637350 693__ $$0EXP:(DE-H253)P-P21.2-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P21.2-20150101$$aPETRA III$$fPETRA Beamline P21.2$$x0
000637350 7001_ $$0P:(DE-H253)PIP1095122$$aHariharan, Avinash$$b1
000637350 7001_ $$0P:(DE-H253)PIP1098335$$aPolatidis, Efthymios$$b2
000637350 7001_ $$0P:(DE-H253)PIP1121256$$aPeter, Nicolas J.$$b3
000637350 7001_ $$aGehlmann, Jaqueline$$b4
000637350 7001_ $$0P:(DE-H253)PIP1098336$$aSofras, Christos$$b5
000637350 7001_ $$0P:(DE-H253)PIP1083297$$aHegedüs, Zoltan$$b6
000637350 7001_ $$00000-0002-7205-9816$$aSayk, Lennart$$b7
000637350 7001_ $$aAllam, Tarek$$b8
000637350 7001_ $$00000-0002-7675-6547$$aSchleifenbaum, Johannes Henrich$$b9
000637350 7001_ $$aHaase, Christian$$b10
000637350 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2025.121423$$gVol. 298, p. 121423 -$$p121423 $$tActa materialia$$v298$$x1359-6454$$y2025
000637350 8564_ $$uhttps://bib-pubdb1.desy.de/record/637350/files/1-s2.0-S1359645425007098-main.pdf$$yOpenAccess
000637350 8564_ $$uhttps://bib-pubdb1.desy.de/record/637350/files/1-s2.0-S1359645425007098-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000637350 909CO $$ooai:bib-pubdb1.desy.de:637350$$popenaire$$popen_access$$pdriver$$pVDB$$pec_fundedresources$$pdnbdelivery
000637350 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1100699$$aExternal Institute$$b0$$kExtern
000637350 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1095122$$aExternal Institute$$b1$$kExtern
000637350 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1098335$$aExternal Institute$$b2$$kExtern
000637350 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1121256$$aExternal Institute$$b3$$kExtern
000637350 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1098336$$aExternal Institute$$b5$$kExtern
000637350 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1083297$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000637350 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000637350 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000637350 9141_ $$y2025
000637350 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-31
000637350 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-31
000637350 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-31
000637350 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000637350 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-31
000637350 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-31
000637350 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2022$$d2024-12-31
000637350 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-31
000637350 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000637350 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-31
000637350 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2022$$d2024-12-31
000637350 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-31
000637350 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-31
000637350 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-31
000637350 9201_ $$0I:(DE-H253)FS_DOOR-User-20241023$$kFS DOOR-User$$lFS DOOR-User$$x0
000637350 9201_ $$0I:(DE-H253)FS-PET-D-20190712$$kFS-PET-D$$lExperimentebetreuung PETRA III$$x1
000637350 980__ $$ajournal
000637350 980__ $$aVDB
000637350 980__ $$aUNRESTRICTED
000637350 980__ $$aI:(DE-H253)FS_DOOR-User-20241023
000637350 980__ $$aI:(DE-H253)FS-PET-D-20190712
000637350 9801_ $$aFullTexts