001     637337
005     20250907054648.0
024 7 _ |a 10.1021/acs.jctc.5c00955
|2 doi
024 7 _ |a 1549-9618
|2 ISSN
024 7 _ |a 1549-9626
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-03829
|2 datacite_doi
024 7 _ |a altmetric:180266053
|2 altmetric
024 7 _ |a pmid:40801247
|2 pmid
037 _ _ |a PUBDB-2025-03829
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Zguns, Pjotrs
|0 P:(DE-H253)PIP1114016
|b 0
|e Corresponding author
245 _ _ |a Benchmarking CHGNet Universal Machine Learning Interatomic Potential against DFT and EXAFS: The Case of Layered WS$_2$ and MoS$_2$
260 _ _ |a Washington, DC
|c 2025
|b [Verlag nicht ermittelbar]
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1756886279_1637428
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Universal machine learning interatomic potentials (uMLIPs) deliver near \emph{ab initio} accuracy in energy and force calculations at a low computational cost, making them invaluable for materials modeling. Although uMLIPs are pretrained on vast \emph{ab initio} data sets, rigorous validation remains essential for their ongoing adoption. In this study, we use the CHGNet uMLIP to model thermal disorder in isostructural layered 2H$_c$-WS$_2$ and 2H$_c$-MoS$_2$, benchmarking it against \emph{ab initio} data and extended X-ray absorption fine structure (EXAFS) spectra, which capture thermal variations in bond lengths and angles. Fine-tuning CHGNet with compound-specific \emph{ab initio} (density functional theory (DFT)) data mitigates the systematic softening (i.e., force underestimation) typical of uMLIPs and simultaneously improves the alignment between molecular dynamics-derived and experimental EXAFS spectra. While fine-tuning with a single DFT structure is viable, using $\sim$100 structures is recommended to accurately reproduce EXAFS spectra and achieve DFT-level accuracy. Benchmarking the CHGNet uMLIP against both DFT and experimental EXAFS data reinforces confidence in its performance and provides guidance for determining optimal fine-tuning data set sizes.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a FS-Proposal: I-20170739 EC (I-20170739-EC)
|0 G:(DE-H253)I-20170739-EC
|c I-20170739-EC
|x 1
536 _ _ |a CALIPSOplus - Convenient Access to Light Sources Open to Innovation, Science and to the World (730872)
|0 G:(EU-Grant)730872
|c 730872
|f H2020-INFRAIA-2016-1
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P65
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P65-20150101
|6 EXP:(DE-H253)P-P65-20150101
|x 0
700 1 _ |a Pudza, Inga
|0 P:(DE-H253)PIP1029767
|b 1
700 1 _ |a Kuzmin, Aleksejs
|0 P:(DE-H253)PIP1009042
|b 2
|e Corresponding author
773 _ _ |a 10.1021/acs.jctc.5c00955
|g Vol. 21, no. 16, p. 8142 - 8150
|0 PERI:(DE-600)2166976-4
|n 16
|p 8142 - 8150
|t Journal of chemical theory and computation
|v 21
|y 2025
|x 1549-9618
856 4 _ |y Restricted
|u https://bib-pubdb1.desy.de/record/637337/files/%C5%BEguns-et-al-2025.pdf
856 4 _ |y Restricted
|u https://bib-pubdb1.desy.de/record/637337/files/Supporting%20Information.pdf
856 4 _ |y Published on 2025-08-13. Available in OpenAccess from 2026-08-13.
|u https://bib-pubdb1.desy.de/record/637337/files/achemso-v19.pdf
856 4 _ |y Restricted
|x pdfa
|u https://bib-pubdb1.desy.de/record/637337/files/%C5%BEguns-et-al-2025.pdf?subformat=pdfa
856 4 _ |y Restricted
|x pdfa
|u https://bib-pubdb1.desy.de/record/637337/files/Supporting%20Information.pdf?subformat=pdfa
856 4 _ |y Published on 2025-08-13. Available in OpenAccess from 2026-08-13.
|x pdfa
|u https://bib-pubdb1.desy.de/record/637337/files/achemso-v19.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:637337
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1114016
910 1 _ |a Institute of Solid State Physics, University of Latvia
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-H253)PIP1114016
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1029767
910 1 _ |a Institute of Solid State Physics, University of Latvia
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-H253)PIP1029767
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1009042
910 1 _ |a Institute of Solid State Physics, University of Latvia
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-H253)PIP1009042
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J CHEM THEORY COMPUT : 2022
|d 2024-12-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM THEORY COMPUT : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21