000637337 001__ 637337
000637337 005__ 20250907054648.0
000637337 0247_ $$2doi$$a10.1021/acs.jctc.5c00955
000637337 0247_ $$2ISSN$$a1549-9618
000637337 0247_ $$2ISSN$$a1549-9626
000637337 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-03829
000637337 0247_ $$2altmetric$$aaltmetric:180266053
000637337 0247_ $$2pmid$$apmid:40801247
000637337 037__ $$aPUBDB-2025-03829
000637337 041__ $$aEnglish
000637337 082__ $$a610
000637337 1001_ $$0P:(DE-H253)PIP1114016$$aZguns, Pjotrs$$b0$$eCorresponding author
000637337 245__ $$aBenchmarking CHGNet Universal Machine Learning Interatomic Potential against DFT and EXAFS: The Case of Layered WS$_2$ and MoS$_2$
000637337 260__ $$aWashington, DC$$b[Verlag nicht ermittelbar]$$c2025
000637337 3367_ $$2DRIVER$$aarticle
000637337 3367_ $$2DataCite$$aOutput Types/Journal article
000637337 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756886279_1637428
000637337 3367_ $$2BibTeX$$aARTICLE
000637337 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000637337 3367_ $$00$$2EndNote$$aJournal Article
000637337 520__ $$aUniversal machine learning interatomic potentials (uMLIPs) deliver near \emph{ab initio} accuracy in energy and force calculations at a low computational cost, making them invaluable for materials modeling. Although uMLIPs are pretrained on vast \emph{ab initio} data sets, rigorous validation remains essential for their ongoing adoption. In this study, we use the CHGNet uMLIP to model thermal disorder in isostructural layered 2H$_c$-WS$_2$ and 2H$_c$-MoS$_2$, benchmarking it against \emph{ab initio} data and extended X-ray absorption fine structure (EXAFS) spectra, which capture thermal variations in bond lengths and angles. Fine-tuning CHGNet with compound-specific \emph{ab initio} (density functional theory (DFT)) data mitigates the systematic softening (i.e., force underestimation) typical of uMLIPs and simultaneously improves the alignment between molecular dynamics-derived and experimental EXAFS spectra. While fine-tuning with a single DFT structure is viable, using $\sim$100 structures is recommended to accurately reproduce EXAFS spectra and achieve DFT-level accuracy. Benchmarking the CHGNet uMLIP against both DFT and experimental EXAFS data reinforces confidence in its performance and provides guidance for determining optimal fine-tuning data set sizes.
000637337 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000637337 536__ $$0G:(DE-H253)I-20170739-EC$$aFS-Proposal: I-20170739 EC (I-20170739-EC)$$cI-20170739-EC$$x1
000637337 536__ $$0G:(EU-Grant)730872$$aCALIPSOplus - Convenient Access to Light Sources Open to Innovation, Science and to the World (730872)$$c730872$$fH2020-INFRAIA-2016-1$$x2
000637337 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000637337 693__ $$0EXP:(DE-H253)P-P65-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P65-20150101$$aPETRA III$$fPETRA Beamline P65$$x0
000637337 7001_ $$0P:(DE-H253)PIP1029767$$aPudza, Inga$$b1
000637337 7001_ $$0P:(DE-H253)PIP1009042$$aKuzmin, Aleksejs$$b2$$eCorresponding author
000637337 773__ $$0PERI:(DE-600)2166976-4$$a10.1021/acs.jctc.5c00955$$gVol. 21, no. 16, p. 8142 - 8150$$n16$$p8142 - 8150$$tJournal of chemical theory and computation$$v21$$x1549-9618$$y2025
000637337 8564_ $$uhttps://bib-pubdb1.desy.de/record/637337/files/%C5%BEguns-et-al-2025.pdf$$yRestricted
000637337 8564_ $$uhttps://bib-pubdb1.desy.de/record/637337/files/Supporting%20Information.pdf$$yRestricted
000637337 8564_ $$uhttps://bib-pubdb1.desy.de/record/637337/files/achemso-v19.pdf$$yPublished on 2025-08-13. Available in OpenAccess from 2026-08-13.
000637337 8564_ $$uhttps://bib-pubdb1.desy.de/record/637337/files/%C5%BEguns-et-al-2025.pdf?subformat=pdfa$$xpdfa$$yRestricted
000637337 8564_ $$uhttps://bib-pubdb1.desy.de/record/637337/files/Supporting%20Information.pdf?subformat=pdfa$$xpdfa$$yRestricted
000637337 8564_ $$uhttps://bib-pubdb1.desy.de/record/637337/files/achemso-v19.pdf?subformat=pdfa$$xpdfa$$yPublished on 2025-08-13. Available in OpenAccess from 2026-08-13.
000637337 909CO $$ooai:bib-pubdb1.desy.de:637337$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000637337 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1114016$$aExternal Institute$$b0$$kExtern
000637337 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1114016$$a Institute of Solid State Physics, University of Latvia$$b0
000637337 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1029767$$aExternal Institute$$b1$$kExtern
000637337 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1029767$$a Institute of Solid State Physics, University of Latvia$$b1
000637337 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1009042$$aExternal Institute$$b2$$kExtern
000637337 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1009042$$a Institute of Solid State Physics, University of Latvia$$b2
000637337 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000637337 9141_ $$y2025
000637337 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
000637337 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
000637337 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000637337 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-12
000637337 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CHEM THEORY COMPUT : 2022$$d2024-12-12
000637337 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-12
000637337 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
000637337 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM THEORY COMPUT : 2022$$d2024-12-12
000637337 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-12
000637337 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
000637337 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000637337 980__ $$ajournal
000637337 980__ $$aVDB
000637337 980__ $$aUNRESTRICTED
000637337 980__ $$aI:(DE-H253)HAS-User-20120731
000637337 9801_ $$aFullTexts