Home > Publications database > Intermarrying MOF Glass and Lead Halide Perovskites for Artificial Photosynthesis > print |
001 | 637335 | ||
005 | 20250907054646.0 | ||
024 | 7 | _ | |a 10.1021/jacs.4c12619 |2 doi |
024 | 7 | _ | |a 0002-7863 |2 ISSN |
024 | 7 | _ | |a 1520-5126 |2 ISSN |
024 | 7 | _ | |a 1943-2984 |2 ISSN |
024 | 7 | _ | |a altmetric:172524034 |2 altmetric |
024 | 7 | _ | |a pmid:39733349 |2 pmid |
037 | _ | _ | |a PUBDB-2025-03827 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Huang, Wengang |0 P:(DE-H253)PIP1106292 |b 0 |
245 | _ | _ | |a Intermarrying MOF Glass and Lead Halide Perovskites for Artificial Photosynthesis |
260 | _ | _ | |a Washington, DC |c 2025 |b ACS Publications |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1756819262_1372813 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Waiting for fulltext |
520 | _ | _ | |a The development of efficient artificial photosynthesis systems is crucial for sustainable chemical production, as they mimic natural processes to convert solar energy into chemical products, thereby addressing both energy and environmental challenges. The main bottlenecks in current research include fabricating highly selective, stable, and scalable catalysts, as well as effectively harnessing the full spectrum of light, particularly the low-energy, long-wavelength portion. Herein, we report a novel composite photocatalyst system based on lead halide perovskites embedded in functionalized MOF glass. The construction of a well-defined interface between the light-harvesting perovskite and stable Rh single-atom-containing MOF glass mimics the functions of photosystem I (PS I). This facilitates efficient photoinduced electron generation under visible light and subsequent electron transfer for coenzyme (NADH) regeneration with high selectivity. The regenerated NADH can then be consumed by immobilized enzymes for CO$_2$ reduction, realizing the artificial photosynthesis process for formic acid generation. This work also elucidates the interactions and optoelectronic responses between MOF glass and perovskites, offering insights into the design and fabrication of nanocomposite photocatalysts for other advanced chemical syntheses. |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 0 |
536 | _ | _ | |a FS-Proposal: I-20230942 (I-20230942) |0 G:(DE-H253)I-20230942 |c I-20230942 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P21.1 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P21.1-20150101 |6 EXP:(DE-H253)P-P21.1-20150101 |x 0 |
700 | 1 | _ | |a Chan, Bun |0 0000-0002-0082-5497 |b 1 |
700 | 1 | _ | |a Yang, Yuwei |0 P:(DE-H253)PIP1109481 |b 2 |
700 | 1 | _ | |a Chen, Peng |b 3 |
700 | 1 | _ | |a Wang, Jingjing |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Casey, Lachlan |0 P:(DE-H253)PIP1102101 |b 5 |
700 | 1 | _ | |a Atzori, Cesare |0 0000-0002-3227-7421 |b 6 |
700 | 1 | _ | |a Schulli, Tobias |0 P:(DE-H253)PIP1110116 |b 7 |
700 | 1 | _ | |a Mathon, Olivier |0 P:(DE-H253)PIP1087114 |b 8 |
700 | 1 | _ | |a Hackbarth, Haira G. |0 P:(DE-H253)PIP1106291 |b 9 |
700 | 1 | _ | |a Bedford, Nicholas M. |0 P:(DE-H253)PIP1092742 |b 10 |
700 | 1 | _ | |a Appadoo, Dominique |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Li, Xuemei |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Lin, Tongen |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Lin, Rijia |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Lee, Jaeho |0 P:(DE-H253)PIP1105098 |b 15 |
700 | 1 | _ | |a Wang, Zhiliang |0 0000-0003-2139-8495 |b 16 |
700 | 1 | _ | |a Chen, Vicki |0 P:(DE-HGF)0 |b 17 |
700 | 1 | _ | |a Cheetham, Anthony K. |b 18 |
700 | 1 | _ | |a Wang, Lianzhou |0 0000-0002-5947-306X |b 19 |
700 | 1 | _ | |a Hou, Jingwei |0 P:(DE-H253)PIP1121301 |b 20 |e Corresponding author |
773 | _ | _ | |a 10.1021/jacs.4c12619 |g Vol. 147, no. 4, p. 3195 - 3205 |0 PERI:(DE-600)1472210-0 |n 4 |p 3195 - 3205 |t Journal of the American Chemical Society |v 147 |y 2025 |x 0002-7863 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/637335/files/huang-et-al-2025-intermarrying-mof-glass-and-lead-halide-perovskites-for-artificial-photosynthesis.pdf |y Restricted |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/637335/files/huang-et-al-2025-intermarrying-mof-glass-and-lead-halide-perovskites-for-artificial-photosynthesis.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:bib-pubdb1.desy.de:637335 |p VDB |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1106292 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1109481 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1102101 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 7 |6 P:(DE-H253)PIP1110116 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 P:(DE-H253)PIP1087114 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 8 |6 P:(DE-H253)PIP1087114 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 9 |6 P:(DE-H253)PIP1106291 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 10 |6 P:(DE-H253)PIP1092742 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 15 |6 P:(DE-H253)PIP1105098 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 20 |6 P:(DE-H253)PIP1121301 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-13 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J AM CHEM SOC : 2022 |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-13 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1200 |2 StatID |b Chemical Reactions |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1210 |2 StatID |b Index Chemicus |d 2024-12-13 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-13 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b J AM CHEM SOC : 2022 |d 2024-12-13 |
920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|