001     637335
005     20250907054646.0
024 7 _ |a 10.1021/jacs.4c12619
|2 doi
024 7 _ |a 0002-7863
|2 ISSN
024 7 _ |a 1520-5126
|2 ISSN
024 7 _ |a 1943-2984
|2 ISSN
024 7 _ |a altmetric:172524034
|2 altmetric
024 7 _ |a pmid:39733349
|2 pmid
037 _ _ |a PUBDB-2025-03827
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Huang, Wengang
|0 P:(DE-H253)PIP1106292
|b 0
245 _ _ |a Intermarrying MOF Glass and Lead Halide Perovskites for Artificial Photosynthesis
260 _ _ |a Washington, DC
|c 2025
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1756819262_1372813
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Waiting for fulltext
520 _ _ |a The development of efficient artificial photosynthesis systems is crucial for sustainable chemical production, as they mimic natural processes to convert solar energy into chemical products, thereby addressing both energy and environmental challenges. The main bottlenecks in current research include fabricating highly selective, stable, and scalable catalysts, as well as effectively harnessing the full spectrum of light, particularly the low-energy, long-wavelength portion. Herein, we report a novel composite photocatalyst system based on lead halide perovskites embedded in functionalized MOF glass. The construction of a well-defined interface between the light-harvesting perovskite and stable Rh single-atom-containing MOF glass mimics the functions of photosystem I (PS I). This facilitates efficient photoinduced electron generation under visible light and subsequent electron transfer for coenzyme (NADH) regeneration with high selectivity. The regenerated NADH can then be consumed by immobilized enzymes for CO$_2$ reduction, realizing the artificial photosynthesis process for formic acid generation. This work also elucidates the interactions and optoelectronic responses between MOF glass and perovskites, offering insights into the design and fabrication of nanocomposite photocatalysts for other advanced chemical syntheses.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a FS-Proposal: I-20230942 (I-20230942)
|0 G:(DE-H253)I-20230942
|c I-20230942
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P21.1
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P21.1-20150101
|6 EXP:(DE-H253)P-P21.1-20150101
|x 0
700 1 _ |a Chan, Bun
|0 0000-0002-0082-5497
|b 1
700 1 _ |a Yang, Yuwei
|0 P:(DE-H253)PIP1109481
|b 2
700 1 _ |a Chen, Peng
|b 3
700 1 _ |a Wang, Jingjing
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Casey, Lachlan
|0 P:(DE-H253)PIP1102101
|b 5
700 1 _ |a Atzori, Cesare
|0 0000-0002-3227-7421
|b 6
700 1 _ |a Schulli, Tobias
|0 P:(DE-H253)PIP1110116
|b 7
700 1 _ |a Mathon, Olivier
|0 P:(DE-H253)PIP1087114
|b 8
700 1 _ |a Hackbarth, Haira G.
|0 P:(DE-H253)PIP1106291
|b 9
700 1 _ |a Bedford, Nicholas M.
|0 P:(DE-H253)PIP1092742
|b 10
700 1 _ |a Appadoo, Dominique
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Li, Xuemei
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Lin, Tongen
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Lin, Rijia
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Lee, Jaeho
|0 P:(DE-H253)PIP1105098
|b 15
700 1 _ |a Wang, Zhiliang
|0 0000-0003-2139-8495
|b 16
700 1 _ |a Chen, Vicki
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Cheetham, Anthony K.
|b 18
700 1 _ |a Wang, Lianzhou
|0 0000-0002-5947-306X
|b 19
700 1 _ |a Hou, Jingwei
|0 P:(DE-H253)PIP1121301
|b 20
|e Corresponding author
773 _ _ |a 10.1021/jacs.4c12619
|g Vol. 147, no. 4, p. 3195 - 3205
|0 PERI:(DE-600)1472210-0
|n 4
|p 3195 - 3205
|t Journal of the American Chemical Society
|v 147
|y 2025
|x 0002-7863
856 4 _ |u https://bib-pubdb1.desy.de/record/637335/files/huang-et-al-2025-intermarrying-mof-glass-and-lead-halide-perovskites-for-artificial-photosynthesis.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/637335/files/huang-et-al-2025-intermarrying-mof-glass-and-lead-halide-perovskites-for-artificial-photosynthesis.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:637335
|p VDB
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1106292
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1109481
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1102101
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1110116
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1087114
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 8
|6 P:(DE-H253)PIP1087114
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1106291
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1092742
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 15
|6 P:(DE-H253)PIP1105098
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 20
|6 P:(DE-H253)PIP1121301
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-13
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CHEM SOC : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-13
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2024-12-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b J AM CHEM SOC : 2022
|d 2024-12-13
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21