000637335 001__ 637335
000637335 005__ 20250907054646.0
000637335 0247_ $$2doi$$a10.1021/jacs.4c12619
000637335 0247_ $$2ISSN$$a0002-7863
000637335 0247_ $$2ISSN$$a1520-5126
000637335 0247_ $$2ISSN$$a1943-2984
000637335 0247_ $$2altmetric$$aaltmetric:172524034
000637335 0247_ $$2pmid$$apmid:39733349
000637335 037__ $$aPUBDB-2025-03827
000637335 041__ $$aEnglish
000637335 082__ $$a540
000637335 1001_ $$0P:(DE-H253)PIP1106292$$aHuang, Wengang$$b0
000637335 245__ $$aIntermarrying MOF Glass and Lead Halide Perovskites for Artificial Photosynthesis
000637335 260__ $$aWashington, DC$$bACS Publications$$c2025
000637335 3367_ $$2DRIVER$$aarticle
000637335 3367_ $$2DataCite$$aOutput Types/Journal article
000637335 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756819262_1372813
000637335 3367_ $$2BibTeX$$aARTICLE
000637335 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000637335 3367_ $$00$$2EndNote$$aJournal Article
000637335 500__ $$aWaiting for fulltext 
000637335 520__ $$aThe development of efficient artificial photosynthesis systems is crucial for sustainable chemical production, as they mimic natural processes to convert solar energy into chemical products, thereby addressing both energy and environmental challenges. The main bottlenecks in current research include fabricating highly selective, stable, and scalable catalysts, as well as effectively harnessing the full spectrum of light, particularly the low-energy, long-wavelength portion. Herein, we report a novel composite photocatalyst system based on lead halide perovskites embedded in functionalized MOF glass. The construction of a well-defined interface between the light-harvesting perovskite and stable Rh single-atom-containing MOF glass mimics the functions of photosystem I (PS I). This facilitates efficient photoinduced electron generation under visible light and subsequent electron transfer for coenzyme (NADH) regeneration with high selectivity. The regenerated NADH can then be consumed by immobilized enzymes for CO$_2$ reduction, realizing the artificial photosynthesis process for formic acid generation. This work also elucidates the interactions and optoelectronic responses between MOF glass and perovskites, offering insights into the design and fabrication of nanocomposite photocatalysts for other advanced chemical syntheses. 
000637335 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000637335 536__ $$0G:(DE-H253)I-20230942$$aFS-Proposal: I-20230942 (I-20230942)$$cI-20230942$$x1
000637335 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000637335 693__ $$0EXP:(DE-H253)P-P21.1-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P21.1-20150101$$aPETRA III$$fPETRA Beamline P21.1$$x0
000637335 7001_ $$00000-0002-0082-5497$$aChan, Bun$$b1
000637335 7001_ $$0P:(DE-H253)PIP1109481$$aYang, Yuwei$$b2
000637335 7001_ $$aChen, Peng$$b3
000637335 7001_ $$0P:(DE-HGF)0$$aWang, Jingjing$$b4
000637335 7001_ $$0P:(DE-H253)PIP1102101$$aCasey, Lachlan$$b5
000637335 7001_ $$00000-0002-3227-7421$$aAtzori, Cesare$$b6
000637335 7001_ $$0P:(DE-H253)PIP1110116$$aSchulli, Tobias$$b7
000637335 7001_ $$0P:(DE-H253)PIP1087114$$aMathon, Olivier$$b8
000637335 7001_ $$0P:(DE-H253)PIP1106291$$aHackbarth, Haira G.$$b9
000637335 7001_ $$0P:(DE-H253)PIP1092742$$aBedford, Nicholas M.$$b10
000637335 7001_ $$0P:(DE-HGF)0$$aAppadoo, Dominique$$b11
000637335 7001_ $$0P:(DE-HGF)0$$aLi, Xuemei$$b12
000637335 7001_ $$0P:(DE-HGF)0$$aLin, Tongen$$b13
000637335 7001_ $$0P:(DE-HGF)0$$aLin, Rijia$$b14
000637335 7001_ $$0P:(DE-H253)PIP1105098$$aLee, Jaeho$$b15
000637335 7001_ $$00000-0003-2139-8495$$aWang, Zhiliang$$b16
000637335 7001_ $$0P:(DE-HGF)0$$aChen, Vicki$$b17
000637335 7001_ $$aCheetham, Anthony K.$$b18
000637335 7001_ $$00000-0002-5947-306X$$aWang, Lianzhou$$b19
000637335 7001_ $$0P:(DE-H253)PIP1121301$$aHou, Jingwei$$b20$$eCorresponding author
000637335 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/jacs.4c12619$$gVol. 147, no. 4, p. 3195 - 3205$$n4$$p3195 - 3205$$tJournal of the American Chemical Society$$v147$$x0002-7863$$y2025
000637335 8564_ $$uhttps://bib-pubdb1.desy.de/record/637335/files/huang-et-al-2025-intermarrying-mof-glass-and-lead-halide-perovskites-for-artificial-photosynthesis.pdf$$yRestricted
000637335 8564_ $$uhttps://bib-pubdb1.desy.de/record/637335/files/huang-et-al-2025-intermarrying-mof-glass-and-lead-halide-perovskites-for-artificial-photosynthesis.pdf?subformat=pdfa$$xpdfa$$yRestricted
000637335 909CO $$ooai:bib-pubdb1.desy.de:637335$$pVDB
000637335 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1106292$$aExternal Institute$$b0$$kExtern
000637335 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1109481$$aExternal Institute$$b2$$kExtern
000637335 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1102101$$aExternal Institute$$b5$$kExtern
000637335 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1110116$$aExternal Institute$$b7$$kExtern
000637335 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1087114$$aExternal Institute$$b8$$kExtern
000637335 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1087114$$aEuropean XFEL$$b8$$kXFEL.EU
000637335 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1106291$$aExternal Institute$$b9$$kExtern
000637335 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1092742$$aExternal Institute$$b10$$kExtern
000637335 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1105098$$aExternal Institute$$b15$$kExtern
000637335 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1121301$$aExternal Institute$$b20$$kExtern
000637335 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000637335 9141_ $$y2025
000637335 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-13$$wger
000637335 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CHEM SOC : 2022$$d2024-12-13
000637335 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
000637335 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
000637335 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-13
000637335 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-13
000637335 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
000637335 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-13
000637335 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-13
000637335 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-13
000637335 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-13
000637335 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2024-12-13
000637335 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-13
000637335 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2024-12-13
000637335 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-13
000637335 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
000637335 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bJ AM CHEM SOC : 2022$$d2024-12-13
000637335 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000637335 980__ $$ajournal
000637335 980__ $$aVDB
000637335 980__ $$aI:(DE-H253)HAS-User-20120731
000637335 980__ $$aUNRESTRICTED