001     637203
005     20250904212717.0
024 7 _ |a 10.1016/j.jallcom.2025.182507
|2 doi
024 7 _ |a 0925-8388
|2 ISSN
024 7 _ |a 1873-4669
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-03812
|2 datacite_doi
037 _ _ |a PUBDB-2025-03812
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Kumar, Yogesh
|0 P:(DE-H253)PIP1087758
|b 0
245 _ _ |a Crystal structure of MnN resolved using x-ray absorption fine structure
260 _ _ |a Lausanne
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1756977992_2044253
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The potential of manganese mononitride (MnN) as an antiferromagnetic material for exchange bias applications is significant, yet its crystal structure is a subject of ongoing debate. Early 3 transition metal mononitrides, such as TiN, and VN, are well-known to crystallize in the rock salt (RS) structure, whereas later ones, like CoN and FeN, favor the zinc blende (ZB) structure. The structural ambiguity of MnN, positioned midway in the 3 series, necessitates further investigation. This study employs a comprehensive x-ray absorption fine structure (XAFS) analysis to clarify the crystal structure of MnN. Single-phase MnN thin films, produced by reactive magnetron sputtering, are characterized using x-ray diffraction (XRD), x-ray absorption near edge structure (XANES), and extended x-ray absorption fine structure (EXAFS). XRD data indicates the successful formation of the MnN phase during the reactive nitrogen sputtering of Mn. By analyzing XANES spectra at the Mn K and L-edges, as well as the N K-edge, and combining the results with EXAFS analysis, this study concludes that MnN crystallizes in the RS structure. The sensitivity of the metal K-edge XANES pre-edge peak to local coordination symmetry is crucial in this determination.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a INDIA-DESY - INDIA-DESY Collaboration (2020_Join2-INDIA-DESY)
|0 G:(DE-HGF)2020_Join2-INDIA-DESY
|c 2020_Join2-INDIA-DESY
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P64
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P64-20150101
|6 EXP:(DE-H253)P-P64-20150101
|x 0
700 1 _ |a Kalal, Shailesh
|0 P:(DE-H253)PIP1096318
|b 1
700 1 _ |a Tayal, Akhil
|0 P:(DE-H253)PIP1015104
|b 2
700 1 _ |a Gupta, Mukul
|0 P:(DE-H253)PIP1015097
|b 3
|e Corresponding author
773 _ _ |a 10.1016/j.jallcom.2025.182507
|g Vol. 1038, p. 182507 -
|0 PERI:(DE-600)2012675-X
|p 182507
|t Journal of alloys and compounds
|v 1038
|y 2025
|x 0925-8388
856 4 _ |u https://bib-pubdb1.desy.de/record/637203/files/1-s2.0-S092583882504068X-main.pdf
856 4 _ |y Published on 2025-08-20. Available in OpenAccess from 2026-08-20.
|u https://bib-pubdb1.desy.de/record/637203/files/document.pdf
856 4 _ |y Published on 2025-08-20. Available in OpenAccess from 2026-08-20.
|x pdfa
|u https://bib-pubdb1.desy.de/record/637203/files/document.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/637203/files/1-s2.0-S092583882504068X-main.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:637203
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1087758
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1096318
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1015104
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1015097
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-02
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J ALLOY COMPD : 2022
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ALLOY COMPD : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS_DOOR-User-20241023
|k FS DOOR-User
|l FS DOOR-User
|x 1
920 1 _ |0 I:(DE-H253)FS-PET-S-20190712
|k FS-PET-S
|l Experimentebetreuung PETRA III
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS_DOOR-User-20241023
980 _ _ |a I:(DE-H253)FS-PET-S-20190712
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21