001     637199
005     20250907054640.0
024 7 _ |a 10.1103/PhysRevLett.134.196102
|2 doi
024 7 _ |a 0031-9007
|2 ISSN
024 7 _ |a 1092-0145
|2 ISSN
024 7 _ |a 1079-7114
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-03808
|2 datacite_doi
024 7 _ |a altmetric:177182190
|2 altmetric
024 7 _ |a pmid:40446281
|2 pmid
037 _ _ |a PUBDB-2025-03808
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Kuzovnikov, Mikhail A.
|0 P:(DE-H253)PIP1100652
|b 0
245 _ _ |a High Pressure Synthesis of Rubidium Superhydrides
260 _ _ |a College Park, Md.
|c 2025
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1756885317_1637421
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Through laser-heated diamond anvil cell experiments, we synthesize a series of rubidium superhydrides and explore their properties with synchrotron x-ray powder diffraction and Raman spectroscopy measurements, combined with density functional theory calculations. Upon heating rubidium monohydride embedded in H$_2$ at a pressure of 18 GPa, we form RbH$_9$−I, which is stable upon decompression down to 8.7 GPa, the lowest stability pressure of any known superhydride. At 22 GPa, another polymorph, RbH$_9$−II is synthesised at high temperature. Unique to the Rb-H system among binary metal hydrides is that further compression does not promote the formation of polyhydrides with higher hydrogen content. Instead, heating above 87 GPa yields RbH$_5$, which exhibits two polymorphs (RbH$_5$−I and RbH$_5$−II). All of the crystal structures comprise a complex network of quasimolecular H$_2$ units and H$^−$ anions, with RbH$_5$providing the first experimental evidence of linear H$^−_3$ anions.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a MetElOne - The Metallization Conditions of Element One (948895)
|0 G:(EU-Grant)948895
|c 948895
|f ERC-2020-STG
|x 1
536 _ _ |a FS-Proposal: I-20220830 (I-20220830)
|0 G:(DE-H253)I-20220830
|c I-20220830
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P02.2
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P02.2-20150101
|6 EXP:(DE-H253)P-P02.2-20150101
|x 0
700 1 _ |a Wang, Busheng
|0 0000-0002-7743-9471
|b 1
700 1 _ |a Wang, Xiaoyu
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Marqueño, Tomas
|0 0000-0001-5371-1082
|b 3
700 1 _ |a Shuttleworth, Hannah A.
|0 P:(DE-H253)PIP1102832
|b 4
700 1 _ |a Strain, Calum
|0 P:(DE-H253)PIP1090358
|b 5
700 1 _ |a Gregoryanz, Eugene
|0 P:(DE-H253)PIP1014479
|b 6
700 1 _ |a Zurek, Eva
|0 0000-0003-0738-867X
|b 7
700 1 _ |a Peña-Alvarez, Miriam
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Howie, Ross
|0 P:(DE-H253)PIP1029046
|b 9
|e Corresponding author
773 _ _ |a 10.1103/PhysRevLett.134.196102
|g Vol. 134, no. 19, p. 196102
|0 PERI:(DE-600)1472655-5
|n 19
|p 196102
|t Physical review letters
|v 134
|y 2025
|x 0031-9007
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/637199/files/PhysRevLett.134.196102.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/637199/files/PhysRevLett.134.196102.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:637199
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1100652
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1102832
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1090358
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1014479
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1029046
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2024-12-21
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-21
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2024-12-21
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS_DOOR-User-20241023
|k FS DOOR-User
|l FS DOOR-User
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS_DOOR-User-20241023
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21