000637196 001__ 637196
000637196 005__ 20250904212717.0
000637196 0247_ $$2doi$$a10.1149/MA2022-024443mtgabs
000637196 0247_ $$2ISSN$$a1091-8213
000637196 0247_ $$2ISSN$$a2151-2043
000637196 037__ $$aPUBDB-2025-03805
000637196 041__ $$aEnglish
000637196 082__ $$a540
000637196 1001_ $$0P:(DE-H253)PIP1110166$$aT, Aswathi$$b0
000637196 1112_ $$a242nd ECS Meeting $$cAtlanta$$d2022-10-09 - 2022-10-13$$wUSA
000637196 245__ $$a(Digital Presentation) Cobalt-Free Spinel-Layered Composite As a Positive Electrode for Sodium-Ion Batteries
000637196 260__ $$c2022
000637196 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1756987187_2044258
000637196 3367_ $$033$$2EndNote$$aConference Paper
000637196 3367_ $$2BibTeX$$aINPROCEEDINGS
000637196 3367_ $$2DRIVER$$aconferenceObject
000637196 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000637196 3367_ $$2ORCID$$aOTHER
000637196 520__ $$aSodium-ion battery (NIB) system is an emerging technology and can be considered as a suitable alternative for lithium-ion batteries (LIBs) due to the large abundance and distribution of sodium on earth and similar working principles to LIB. Among those cathodes for NIBs, layered transition metal oxides (NaxMO2) receive more attention because of their higher capacity, appropriate operating potentials, higher ionic conductivity, and ease of synthesis [1]. According to the stacking sequence of oxygen layers and Na occupation sites, layered transition metal oxides are mainly classified as P2, O3, P3, and O2 structures. The letters P and O imply that the sodium occupies trigonal prismatic sites and octahedral sites, respectively. The numbers indicate the no. of oxygen stacking layers [2]. Among these, the P2 type layered transition metal oxides gained more recognition as cathode materials for NIBs due to their superior rate capability from the migration of sodium ions through the face-sharing trigonal prismatic sites [3]. However, the intercalation/de-intercalation of large sodium ions creates some structural deterioration and irreversibility. Designing multiphase materials is an effective strategy to improve the electrochemical performance of the material to avail the synergistic effects from each phase [3,4].In this work, a cobalt-free layered-spinel composite was synthesized by sol-gel method as positive electrode material for NIBs. It is highly attractive, as it is cobalt-free and hence, cost-effective and environmentally benign. The layered phase provides a smoother diffusion pathway and the spinel phase could enhance the electronic conductivity [3,4]. The presence of layered and spinel phases was confirmed by the X-ray diffraction technique. Scanning electron microscopic investigations reveal particles of layered morphology with well-defined edges.The electrochemical investigations were done in Na-half cells in the voltage range of 1.5- 4.0 V vs. Na+/Na. The cyclic voltammogram of the layered-spinel composite in Na half-cell shows two sets of peaks corresponding to the redox activity of Mn and Ni. When the upper cut-off voltage was increased above 4 V, contributions from the Fe electrochemical activity were also observed. To investigate the sodium storage performance, galvanostatic charge-discharge studies were done. The material displayed an initial discharge capacity of 171 mAh g-1 and promising high-rate behavior. To investigate the electrochemical mechanism, in operando X-ray absorption spectroscopic studies were done and the results will be discussed in detail.
000637196 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000637196 536__ $$0G:(GEPRIS)390874152$$aDFG project G:(GEPRIS)390874152 - EXC 2154: POLiS - Post Lithium Storage Cluster of Excellence (390874152)$$c390874152$$x1
000637196 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000637196 693__ $$0EXP:(DE-H253)P-P65-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P65-20150101$$aPETRA III$$fPETRA Beamline P65$$x0
000637196 7001_ $$0P:(DE-H253)PIP1092754$$aSurendran, Ammu$$b1
000637196 7001_ $$aEnale, Harsha$$b2
000637196 7001_ $$0P:(DE-H253)PIP1011888$$aSarapulova, Angelina$$b3
000637196 7001_ $$0P:(DE-H253)PIP1028857$$aFu, Qiang$$b4
000637196 7001_ $$0P:(DE-H253)PIP1010102$$aKnapp, Michael$$b5
000637196 7001_ $$0P:(DE-H253)PIP1008367$$aDixon, Ditty$$b6
000637196 7001_ $$0P:(DE-H253)PIP1008164$$aBhaskar, Aiswarya$$b7
000637196 773__ $$0PERI:(DE-600)2438749-6$$a10.1149/MA2022-024443mtgabs$$gVol. MA2022-02, no. 4, p. 443 - 443$$x2151-2043$$y2022
000637196 909CO $$ooai:bib-pubdb1.desy.de:637196$$pVDB
000637196 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1110166$$aExternal Institute$$b0$$kExtern
000637196 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1092754$$aExternal Institute$$b1$$kExtern
000637196 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1011888$$aExternal Institute$$b3$$kExtern
000637196 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1028857$$aExternal Institute$$b4$$kExtern
000637196 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1010102$$aExternal Institute$$b5$$kExtern
000637196 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008367$$aExternal Institute$$b6$$kExtern
000637196 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008164$$aExternal Institute$$b7$$kExtern
000637196 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000637196 9201_ $$0I:(DE-H253)FS_DOOR-User-20241023$$kFS DOOR-User$$lFS DOOR-User$$x0
000637196 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x1
000637196 980__ $$aabstract
000637196 980__ $$aVDB
000637196 980__ $$aI:(DE-H253)FS_DOOR-User-20241023
000637196 980__ $$aI:(DE-H253)HAS-User-20120731
000637196 980__ $$aUNRESTRICTED